

Run: 276731 Event: 876578955 2015-08-22 07:43:18 CEST

Selected results related to forward physics from the ATLAS experiment

France-Japan SAKURA Workshop on small-x physics at LHC 29/10/2016 Yuji Yamazaki (Kobe)

LHC operation 2016

- *pp* collisions just finished
- Heavy lon run for the rest of the year (p – Pb collisions

 $\sqrt{s_{NN}} = 5$ and TeV)

	Scrubbing															
Apr							June									
Wk		14	15	16		17	18	19	20		21	22	23	24	25	26
Mo		4	11	1	9	ر %	2	9	Whit	16	23	36	6	13	20	27
Tu									and the							
We			rjactor TS (8 hours)						Val				151			
Th							Assertation							beta* 2.5 km dev.		
Fr		Boro	na maionia min				мау жау сопр				VelM					
Sa		W	ith beam	ug 📃												
Su						ls: May										

	July				Aug			Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Mo	٩	11	18	25	1	9	15	22	29	5	12	E _ 19	20
Tu								MD 2				2.5 k taking	
We											T52	Ka*-	
Th				MD 1						Jeune G		5	
Fr								beta* 2.5 km dev.					
Sa										MD 3			
Su				beta* 2.5 km dev.						NO 3			

Run-2 2016 luminosity

- 2016: almost 40 fb⁻¹
 - After all kind of troubles (injector, shield,)
 the operation is very smooth from June onwards
 - Design luminosity $(1 \times 10^{34} \text{ cm}^2 \text{s}^{-1})$ achieved!
 - Hopefully successfully collecting the Run-2 luminosity of 100 fb⁻¹ towards 2019

2016 challenge: trigger

- Input rate: ~ 100 kHz (run1: 75 kHz)
 - with a bit of dead time
- Output rate: up to 2 kHz (run-1 design: 400 Hz)

Tight resource for computing etc.

ATLAS Run1/2 standard model summary

Standard Model Production Cross Section Measurements

Status: August 2016

Today's selected topics

- Diffractive dijet production
- Double-parton interaction using 4-jets
- The " $\phi_{\ell\ell}^*$ " behaviour in W/Z
- Inelastic cross section @ 13 TeV with MBTS (remnant tagger)
- Elastic cross sections by the ALFA detector

Phys. Lett. B 754 (2016) 214

Diffractive dijet cross sections

- Main objective: to obtain the "survival probability"
- Rapidity gap selection
- Low p_T jets to access small M_X
 - $p_T > 20$ GeV and $|\eta| < 4.4$
- Cross sections in $\tilde{\xi}$ (an estimator of ξ) and $\Delta \eta^F$ (rapidity gap from the forward edge of the detector)

Diffractive region: $\Delta \eta^F > 2.0$

- Significant excess over ND models (PYTHIA8, POWHEG+PYTHIA)
- PYTHYA8 SD+DD explains the data without suppression factor
 - for various "Pomeron flux" models
- POMWIG too high, giving $S^2 = 0.16 \pm 0.04(stat.) \pm 0.08(exp.syst.)$

What is going on?

cf. CMS result

• You see a bit of excess over Pythia8 ND+SD+DD, in fact

CERN-EP-2016-183 arXiv:1608.01857

Double-parton interactions through 4-jets

- two types of double-parton scattering signal in 4-jet events
 - "cDPI": complete-DPI, 2-jet ⊗ 2-jet
 - "sDPI": semi-DPI, 3-jet ⊗ 1-jet
 - 1jet missing from detection for the "second" scattering
 - and generic 4-jet events from single parton-scattering

cDPI can be distinguished from the SPI, but sDPI not quite

Effective cross section $\sigma_{ m eff}$

- $\sigma_{\rm eff}$: transverse area of the hadron causing DPI
 - $\sigma_{4j}^{\text{DPS}} = \frac{1}{2} \frac{\sigma_{2j}^A \sigma_{2j}^B}{\sigma_{\text{eff}}}$, which can be obtained using the relation: $\sigma_{4j}^{\text{DPS}} = f_{\text{DPS}} \cdot \sigma_{4j}$ and the dijet cross section σ_{2j}

eff [mb]

- $\sigma_{\rm eff} = 14.9^{+1.2}_{-1.0}(stat.)^{+5.1}_{-3.8}(syst.) \text{ mb}$
 - obtained from the measurement $f_{4j}^{DPS} = 0.092^{+0.005}_{-0.011}(stat.)^{+0.033}_{-0.037}(syst.)$
- No trend in increase/decrease as a function of \sqrt{s}

Drell-Yan $p_T^{\ell\ell}$ and " ϕ_η^* "

• p_T of the Drell-Yan lepton pair is sensitive to radiation: for both soft (or forward) and hard regime

•
$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta \phi}{2}\right) \cdot \sin\left(\theta_{\eta}^*\right) \simeq \frac{p_T^{\ell \ell}}{\sqrt{2}M_{\ell \ell}}$$

only with angles of leptons, experimentally more robust

some structure against RESBOS, approximate NNLO+NNLL soft gluon below and above the mass of the vector boson

dependence on the vector-boson rapidity

- The model knows the approximate trend as a function of the boson rapidity
- the pattern of the deviations are similar for all rapidity ranges

comparison to other models

- Quite different predictions: see
 - Powheg+Pythia and +Herwig
 - Powheg and Sherpa
 - … and RESBOS

CERN-EP-2016-140 arXiv:1606.02625

Inelastic cross section @ 13 TeV

 MBTS (Minimum-bias trigger scintillators) to tag inelastic, SD (single-diffractive) and DD (double-) events

- Covering 2.07 < $|\eta|$ < 3.86, corresp. to $\xi = M_X/s > 5 \times 10^{-6}$

• Other detectors including LHCf are used to calibrate the trigger efficiency MBTS

Inclusive events

Single-sided events (mostly SD) ¹⁵

Diffractive fraction and MBTS hits

- $R_{SS} = (single-sided)/inclusive$
 - EPOS/QGSJET needs large diffractive fraction for explaining the observed R_{SS}
 - Mainly because of large multiplicity in the MBTS i.e. in forward rapidity

13 TeV inelastic cross section $\sigma_{\rm inel}$

- Uncertainty due to the diffractive fraction f_D is small
- Extrapolation for $\xi < 5 \times 10^{-6}$: 9.9 \pm 2.4 mb
 - "total" inelastic: $\sigma_{\text{inel}} = 78.1 \pm 0.6(\text{exp}) \pm 2.4(\text{extrap.}) \text{ mb}$

Total cross section from optical theorem

- t –distribution measured by double-arm Roman pots
 - ALFA scintillating fibres by ATLAS
 - TOTEM around the CMS IP
- ALFA uses luminosity for absolute cross section
- TOTEM does not depend on luminosity measurement

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{\left(\frac{dN_{el}}{dt}\right)\Big|_{t=0}}{(N_{el}+N_{inel})}$$

Results

- Some tension between two results
 - slope results agree, though

BACKUP

Effect of Coulomb scattering

- Total cross section determined by extrapolating to t=0
 - need to take into account the Coulomb scattering and non-exponential slope
- interference around $|t| \sim 0.01$
- cross section only important below this range (not measured by ATLAS)