Introduction to the cosmic-ray air shower observations and LHCf

Takashi Sako (ISEE/KMI, Nagoya University)

France-Japan SAKURA Workshop on small-x physics at the LHC

Cosmic-ray spectrum and collider energy

(D'Enterria et al., APP, 35,98-113, 2011)

Because of low flux, high-energy CRs are observed through atmospheric air showers

Air shower observation technic

Surface detectors = single layer sampling calorimeter Fluorescence detectors = total absorption calorimeter

3 key observables in air shower observations

- Energy (spectrum)
 - Acceleration mechanism at source
 - Propagation in the interstellar or intergalactic space (photopion production, photo-disintegration)
- Mass (chemical composition)
 - Environment of the source
 - Photo-disintegration in the propagation
- Direction
 - Source direction (astronomy)
 - Bending and diffusion in the magnetic field
 - Rigidity (E/Z) dependence

Not independent each other

=> source and propagation scenario to explain all observations is required

How can we measure energy (E) and mass (A)?

ex) 10^{17} eV proton $14x10^{17}$ eV proton

How can we measure energy (E) and mass (A)?

ex) 10^{17} eV proton $14x10^{17}$ eV proton

14x10¹⁷ eV Nitrogen = 14 superposition of 10¹⁷eV proton (nucleon)

(E,A) degeneracy are usually solved by (I_{fluor}, <Xmax>) or (N_e, N_{mu}) observables

Cosmic-ray measurements and hadronic interaction

KASCADE Grande, Astropart. Phys., 47 (2013) 54-66

PAO, PRD, 90, 122005 (2014)

Interpretations rely on the MC predictions with an assumed hadronic interaction model

Effect to <X_{max}> (R.Ulrich et al., PRD, 83 (2011) 054026)

Effect to <X_{max}> (R.Ulrich et al., PRD, 83 (2011) 054026)

Effect to <X_{max}> (R.Ulrich et al., PRD, 83 (2011) 054026)

Reasonable range of f_{19} is unknown Effects of spectra, nuclear effect are unknown (difficult to modify a single parameter like f_{19})

Experimental data by accelerators as much as possible are important

What should be measured at colliders

Most of the particles are produced in the central region Most of the energy flows into very forward = relevant to CR air shower

The LHC forward experiment

- ✓ All charged particles are swept by dipole magnet
- ✓ Neutral particles (photons and neutrons) arrive at LHCf
- ✓ η >8.4 (to infinity) is covered

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers
- ✓ Plastic scintillators => GSO scintillators, SciFi => GSO bars in Run2

photon (predominantly π^0 decay) cross section at 7TeV p-p collision

EPOS 7TeV p-p photon

LHCf (RHICf) History

- ✓ 2004 LOI submitted to CERN
- ✓ 2006 TDR approved by CERN
- ✓ 2009 First data taking at <u>Vs=900GeV p-p</u> collision
- ✓ 2010 <u>Vs=7TeV p-p</u> collision
- \checkmark 2013 $\sqrt{s=2.76TeV p-p \& \sqrt{s_{NN}}=5TeV p-Pb}$ collisions
- ✓ 2015 <u>Vs=13TeV p-p</u> collision
- ✓ 2016 $\sqrt{s_{NN}}$ =8.1TeV p-Pb collision
- ✓ 2017 <u>Vs=510GeV p-p</u> collision as RHICf

Publications

physics results

performance results

	Photon (EM shower)	Neutron (hadron shower)	π^0 (limited acceptance)	π ⁰ (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129- 136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298- 303				IJMPA, 28 (2013) 1330036
7TeV p-p	PLB, 703 (2011) 128- 134	PLB, 750 (2015) 360- 366	PRD, 86 (2012) 092001	PRD, 94 (2016) 032007	
2.76TeV p-p			PRC, 89 (2014) 065209		
5.02TeV p-Pb					
13TeV p-p	Preliminary	Analysis in progress			

π⁰ p_z spectra in 7TeV p-p collisions (PRD, 94 (2016) 032007)

Comparison with models developed for CR physics except PYTHIA

π^0 in 7TeV p-p collision LHCf and models

π^0 in 7TeV p-p collision LHCf and models (ratio to data)

Vs scaling ; π^0

- \checkmark Scaling is essential to extrapolate beyond LHC
- ✓ (630GeV −) 2.76TeV − 7TeV good scaling within uncertainties
- ✓ Wider coverage in y and p_T with 13TeV data
- ✓ Wider √s coverage with RHICf experiment in 2017 at √s=510GeV

- ✓ PHENIX explains the result by 1 pion exchange
- ✓ More complicated exchanges at >TeV?
- ✓ LHCf data at 900GeV, 2.76TeV and 13TeV to be analyzed
- ✓ RHICf data at 510GeV will be added in 2017

Only highest energy?

"scaling" is a key to extrapolate beyond the LHC energy

RHICf using one of the LHCf \checkmark detectors is approved for operation in 2017 at 510GeV p+p collisions at RHIC

LHCf neutrons

DPMJET 3.04

PYTHIA 8.145

2500 3000 3500 Energy [GeV]

SYBILL 2.1

η > **10.76**

1000 1500 2000

Installation and commissioning are on going 24

Summary

- Cosmic-ray source and propagation are still key topic of astrophysics
- Air shower observations developed, but uncertainty in the hadronic interaction limits the interpretation
- Forward production (soft interaction) is key
- LHCf and RHICf measure forward particle production
- Hadron physics can make a significant contribution to the astrophysics
- (Air shower observations may contribute hadron physics, or new physics)