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n Freeze-out

n Hadronic transport

n Hadronization

n (Locally thermalized?) system of quarks and gluons

n Pre-equilibrium stage

n in-coming nuclei at nearly the velocity of light = CGC !
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Introduction
Strong collectivities observed at RHIC = “QCD matter” !?
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 RG EOS, Huovinen et al.π

Figure 1: Cartoon, and pion v2 taken from PHENIX WP

n v2 at RHIC is comparable to ideal-hydro ‘prediction’

n Accidental coincidence to ideal hydro?

Cf. PCE gives too large v2
Ideal-QGP+ had-cascade = best modeling to date
v2 value depends on initial profile as well as τ0

n Anyway, τ0 . 1 fm/c is discussed with RHIC data
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Introduction
If so,
in what mechanism does the system thermalize within 1 fm/c?

theoretical/numerical efforts to understand early-time evolution

n perturbative parton cascade 2→2 is too slow
including 2→3 helps, but then how about 2 → 4,..., etc.?

C. Greiner et al.

n Instability inherent to the initial configuration
Mrowczynski, Arnold, Rebhan, Romatschke, Dumitru, Nara,...

n Anomalous viscosity due to random strong gauge fields
Asakawa-Bass-Muller
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Objective and Outline
Objective = Analytic study of ...
n Early-time evolution of the coherent color field (= Glasmaa)
n Unstable modes in the Glasma configuration

1. Introduction

2. CGC-CGC model for high-energy A-A collsions

3. Classical field evolution

4. Fluctuations - linear analysis

5. Concluding remarks and open issues

aGlasma is a jargon meaning the transient state between initial CGC and thermalized states.



Introduction
l Heavy Ion Collisions
l Early Thermalization

CGC-CGC collisions

Our approach

Classical field evolution

Fluctuations

Concluding remarks

H. Fujii Komaba Seminar, 2008.4.16 – p. 5

Objective and Outline
Objective = Analytic study of ...
n Early-time evolution of the coherent color field (= Glasmaa)
n Unstable modes in the Glasma configuration

1. Introduction

2. CGC-CGC model for high-energy A-A collsions

3. Classical field evolution

4. Fluctuations - linear analysis

5. Concluding remarks and open issues

aGlasma is a jargon meaning the transient state between initial CGC and thermalized states.



Introduction

CGC-CGC collisions
l McLerran-Venugopalan model
l Collision
l Strong longitudinal field

Our approach

Classical field evolution

Fluctuations

Concluding remarks

H. Fujii Komaba Seminar, 2008.4.16 – p. 6

Small-x wavefunction

boost

B in a high energy reaction we take a snap-shot of these
fluctuations generated from the frozen source

B frozen source may be treated statistically, since the moment
of collision is arbitrary and we only observe limited correlations
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MV model = simplest CGC picture

McLerran, Venugopalan (1994), Iancu, Leonidov, McLerran (2001)

n Small x modes = classical color field
n Large x modes = “frozen” color sources ρa

n The classical field obeys Yang-Mills equations:

[Dν , F
νµ]a = δµ+δ(x−)ρa(~x⊥)

w/ “sol” Aµ
aCOV (~x) = δµ+αa(~x) s.t.

−∇2
⊥αa(~x) = ρaCOV (~x)

n gauge transform to the LC gauge :
Ai(~x) ∼ θ(x−) i

g
V (∂iV †), V †(x⊥) = Pexp

n

ig
R ∞
−∞ dz−α(z−, x⊥)

o

n The color sources ρa has random distribution Wx0
[ρ] a

n Typical scale:
〈

ρ2
〉

∼ Q2
s(x0) saturation

aObservables are calculated in the presence of the classical field, and then averaged over the

configurations of the sources ρa: 〈O〉 =
R

[Dρa] Wx0
[ρa] O[ρa]
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CGC-CGC collision
n Two-current problem:

[Dµ, F µν ] = Jν w/ Jν = δν+δ(x−)ρ1(x⊥) + δν−δ(x+)ρ2(x⊥)

n Boost invariance ⇒ YM eq. in τ − η coordinate:

τ [Dτ ,
1

τ
Fτη] − [Di, Fiη] = 0 , (1)

[Dη,
1

τ
Fτη] − [Di, τFiτ ] = 0 , (2)

1

τ
[Dτ , τFiτ ] − 1

τ2
[Dη, Fiη] + [Dj , Fji] = 0 (3)

n w/ Fock-Schwinger gauge: Aτ = 1
τ
(x+A− + x−A+) = 0 .

n Boudary condition on the light-cone: Kovner-McLerran-Weigert (1995)

α(τ = 0, x⊥) = − ig

2
[αi

1(x⊥), αi
2(x⊥)] , (4)

αi(τ = 0, x⊥) = αi
1(x⊥) + αi

2(x⊥) , (5)
for

Aη = Aη = −τ2α(τ, x⊥) , Ai = Ai = αi(τ, x⊥). (6)
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CGC-CGC collision

T. Lappi’s fig.

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.
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Strong longitudinal field

n Purely longitudinal configuration just after the collision:

Ez|τ=0+ = −ig[αi1, α
i
2] , (7)

Bz|τ=0+ = igεij [α
i
1, α

j
2] (8)

n Our picture of the initial boost-invariant cofiguration
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Numerical simulation

T. Lappi (after ensemble average)
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Our approach/assumption/expectation

n One event corresponds to one fixed initial color configuration
n Every configuration evolves rapidly to thermalized state

Avoid ensemble average

n Each flux tube will have associated unstable modes

n Work with SU(2)c
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Classical field evolution
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Pure magnetic classical field

n Assume (1) initial configuration

α = 0, αi 6= 0

Ez = 0 , Bz = −F12 , E
i = −Fiτ cosh η , Bi = εijFjτ sinh η.

(η = 0 in the following)

n Assume (2) Bz ‖ 3̂ ⇒ Abelian dynamics

n Writing α̃i = kiC‖ + εijkjC⊥, we find C‖ is unphysical gauge
freedom, and

∂2
τC⊥ +

1

τ
∂τC⊥ + k2

⊥C⊥ = 0

with solution:

αi(τ,x) =

∫

d2k⊥
(2π)2

eik⊥xJ0(|k⊥|τ) α̃init
i (k⊥)
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Simple example: Gaussian
n For initial configuration,

α̃init
i (k⊥) ∝ −i

εijkj
k2
⊥

e
− k2

⊥

4Q2
s

Bz(τ, r) = B0 e−Q
2
sr

2

e−Q
2
sτ

2

I0(2Q2
srτ)

ET (τ, r) = B0 e−Q
2
sr

2

e−Q
2
sτ

2

I1(2Q2
srτ)

n Qsτ=0, 0.5, 1.0, 1.5, 2.0
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Simple example: Gaussian

At constant time, Qst = 1, 2

-2 -1 1 2

-2

-1

1

2

Field expands outwards inducing electric field component, and
weakens.

Remember an electric capacitor
- our model is essentially Abelian
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Simple example: Gaussian

Evolution of the average energy density:

(Bz)2 ≡

∫

d2x⊥(Bz)2 =
π

2

B2
0

Q2
s

e−Q
2
sτ

2

I0(Q2
sτ

2) ,

(ET )2 ≡

∫

d2x⊥(ET )2 =
π

2

B2
0

Q2
s

e−Q
2
sτ

2

I1(Q2
sτ

2) .

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Quite similar to Lappi’s: important dynamics is Abelian!??
Long. pressure is negative: ((Bz)2 − (ET )2)/2
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Pure electric classical field

n Assume (1) initial configuration

α 6= 0, αi = 0

Ei = 0 , Ez =
1

τ
∂τ (−τ2α) , Bi = τεij∂jα , B

z = 0

(η = 0)

n Assume (2) Ez ‖ 3̂ ⇒ Abelian dynamics

n EoM and solution:

1

τ3
∂τ (τ3∂τα) − ∂2

i α = 0

α(τ, x⊥) =

∫

d2k⊥
(2π)2

eik⊥x⊥J0(|k⊥|τ) α̃init
i (k⊥)

n The same analysis as magnetic case with E ↔ B.
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Fluctuations

n Fluctuations are essential to thermalization (isotopic
pressure)

Ai = Ai + ai(τ, η, x⊥) , Aη = Aη + aη(τ, η, x⊥)

n Look for unstable modes associated with the tube config.

n For simplisity, assume a constant field over a size of 1/Qs

n Test of stability
= Linear analysis around a constant field
= Abelian background + charged/neutral fluctuations
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Fluctuation on magnetic background
n Assume a constant magnetic field in 3̂ direction:

α = 0, αai = δa3B

2
(yδi1 − xδi2) ,

n Case of aη 6= 0 and ai = 0 is stable.
Choose aη = 0 and ai 6= 0.

[Di, ∂ηai] = 0 ,

[Di, τ∂τai] = 0 ,

−
1

τ
∂τ (τ∂τai) +

1

τ2
∂2
ηai + [Dj , δFji] − ig[aj ,Fji] = 0

where δFji = [Dj , ai] − [Di, aj ]

n Setting [Di, ai] = 0 (Gauss law), we have

−
1

τ
∂τ (τ∂τ ã

a
i ) −

ν2

τ2
ãai + ∂2

⊥ã
a
i + gBε3ab∂θã

b
i

+2gBε3ab
(

ãb2δi1 − ãb1δi2
)

+
g2B2r2

4
ε3cbε3baãci = 0 ,

n “neutral” a3
i field is free.
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Fluctuation on magnetic background
n Fourier modes in the rapidity:

ai(τ, η,x) =

Z

dν

2π
eiνη ãi(τ, ν, x)

n Cylindrical coordinate and angular momentum ∂θ → im:

x = r cos θ, y = r sin θ

ãa
i ∝ eimθ

n Diagonalize the eqn. introducing

ã
(±)
i = ã1

i ± i ã2
i , ã

(·)
± = ã

(·)
1 ± i ã

(·)
2 .

n EoM:

1

τ
∂τ (τ∂τ ã

(±)
+ ) +

„

ν2

τ2
∓ mgB ± 2gB

«

ã
(±)
+ +

„

−∂2
⊥ +

g2B2r2

4

«

ã
(±)
+ = 0 ,

1

τ
∂τ (τ∂τ ã

(±)
− ) +

„

ν2

τ2
∓ mgB ∓ 2gB

«

ã
(±)
− +

„

−∂2
⊥ +

g2B2r2

4

«

ã
(±)
− = 0 .

Charged fluctuation with anomalous mag. momemt in a mag. field
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Fluctuation on magnetic background

n Introducing the HO wavefunc. of 2dim with eigenvalue,
En = (2n + |m| + 1)gB, we find

1

τ
∂τ (τ∂τ ã

(±)
+ ) +

„

En ∓ mgB ± 2gB +
ν2

τ2

«

ã
(±)
+ = 0 ,

1

τ
∂τ (τ∂τ ã

(±)
− ) +

„

En ∓ mgB ∓ 2gB +
ν2

τ2

«

ã
(±)
− = 0

n Spring cnst. En ∓ mgB ± 2gB or En ∓ mgB ∓ 2gB is crucial

n Solution is again given by Bessel fn.

n EoM and sol. of unstable modes for n=0

∂2
τf +

1

τ
∂τf +

„

−gB +
ν2

τ2

«

f = 0

ã
(−)
+ , ã

(+)
− ∝ eimθ r|m| e−

gBr2

4 Iiν

“

p

gB τ
”

→ e
√

gBτ

p

2π
√

gB τ
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Fluctuation on magnetic background

n Introducing the HO wavefunc. of 2dim with eigenvalue,
En = (2n + |m| + 1)gB, we find

1

τ
∂τ (τ∂τ ã

(±)
+ ) +

„

En ∓ mgB ± 2gB +
ν2

τ2

«

ã
(±)
+ = 0 ,

1

τ
∂τ (τ∂τ ã

(±)
− ) +

„

En ∓ mgB ∓ 2gB +
ν2

τ2

«

ã
(±)
− = 0

n Spring cnst. En ∓ mgB ± 2gB or En ∓ mgB ∓ 2gB is crucial

n Instability manifestly shows up when (...) vanishes

n The larger-ν2 modes participate in the instability later

Qs(τwait + τgrow) ∼ ν + 1

with
√

gB ∼ Qs.

2 4 6 8 10 12 14

-1

1

2

3

4

ν = 8, 12
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Fluctuation on magnetic background

n νmax ∝ τ is observed Romatschke-Venugolapan

O
O O

O

O

O

0 250 500 750 1000 1250 1500 1750 2000
g2µτ

0
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ν m
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(τ
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1/2

16x256,∆=10−10aη
1/2
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1/2

O O

32x64, ∆=10−6aη
1/2

16x256,∆=10−5aη
1/2

16x256,∆=10−4aη
1/2

-3.2+0.06 g2µτ
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Fluctuation on electric background
n Assume a constant electric field in 3̂ direction:

α = −1

2
E3̂, αa

i = 0 ,

n Again, case of aη 6= 0 and ai = 0 is stable.
Choose aη = 0 and ai 6= 0

∂i[Dη, ai] = 0 ,

∂i(τ∂τai) = 0 ,

− 1

τ
∂τ (τ∂τai) +

1

τ2
[Dη, [Dη, ai]] + ∂j(∂jai − ∂iaj) = 0 .

n Introducing the Fourier transform:

ai(τ, η, x) =

Z

dνd2k⊥
(2π)3

eiνη eik⊥x

“

εijkj b̃(τ, ν, k⊥)
”

n 1st, 2nd eqns. are OK since (...) ⊥ ki. The 3rd:

1

τ
∂τ (τ∂τ b̃a) +

1

τ2

„

ν2b̃a − iνgEτ2ε3bab̃b +
g2E2τ4

4
ε3caε3cbb̃b

«

+ k2
⊥b̃a = 0 .
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Fluctuation on electric background
n Diagonalize the eqn. with charged fields

b̃(±) = b̃1 ± i b̃2

as
(

∂2
τ +

1

τ
∂τ

)

b̃(±) +

{

k2
⊥ +

1

τ2

(

ν2 ± νgEτ2 +
g2E2

4
τ4

)}

b̃(±) = 0 .

n In small τ region, one might be able to neglect τ 4 in (...).
Then instability might exist for ν2 − νgEτ2 < 0

n wrong! because τ4 non-negligible when gEτ 2 ∼ ν. Indeed,

(...) = (ν ± gEτ2/2)2 ≥ 0

n No instability in the electric back-ground
n But, the Schwinger mechanism in electric field is a kind of

instability...
any importance to our discussion?
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Remarks and open issues
n We have studied clasical field evolution of a color flux tube with

fixed color direction w/o ensemble average

n Energy density profile is very similar to simulation result

n Is Abelian dynamics essential??
Any room for non-Abelian effects??

n We have performed stability analysis of constant color config.

n We have found an instability on the magnetic constant field

n The max value of rapidity-mom. of unstable modes, νmax ∝ τ ;
similar behavior observed in simulation

n Electric background field has no apparent instability - how about the
Schwinger mechanism?

n Physical picture - we want more vivid picture for our result

n Back-reactions, which must be important when instability has grown
up

n Relation to Weibel instability, Schwinger mechanism, etc

n Duality - Larry repeatedly told us ’think about duality of E&B’
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