Chiral Magnetic Effect and the QCD Phase Transitions

Kenji Fukushima

Department of Physics, Keio University

Typical Scales in QCD Physics Le Marte What happens at $T \sim \Lambda_{\text{OCD}} \sim 200 \text{MeV}$? → Quark-Gluon Plasma What happens at $\rho_{\rm B} \sim (\Lambda_{\rm OCD})^3 \sim 1 \,{\rm fm}^{-3}$? \rightarrow Color Superconductor What happens at $eB \sim (\Lambda_{OCD})^2 \sim 6.8 \times 10^{18} \text{G}$? \rightarrow ?????

QCD Phase Diagram

ALAR, ALAR

QCD Phase Diagram

QCD Phase Diagram

Star Barris and a star all all all all all all

Most Likely $T_{ch} > T_{dec}$

Anomaly Matching Condition ('t Hooft)

$$K^{AB}_{\mu\nu}(q) = i \int d^4 x \, e^{iq \cdot x} \langle T j^A_{5\mu}(x) j^B_{\nu}(0) \rangle_B$$

$$\sim -N_c \frac{e_A B}{2\pi^2} \frac{q_\mu \tilde{q}_\nu}{q^2} \frac{1}{2} \delta^{AB}$$

c.f. Chiral Magnetic Effect $j_3 \sim B j_{50} \quad j_{53} \sim B j_0$

If quarks are confined, how this IR singularity appears? In the confined world there must be massless NG bosons (chiral broken).

> For $N_{\rm f}$ =2, massless proton and neutron can saturate the IR singularity...

In real world N_f >2 but *s* quarks are massive !? 2010年12月3日@駒場

- Assume that massless quarks are confined in a bag by *s*-wave potential (which does not change the spin).
- When quarks turn back, they change the chirality, which should be compensated by chiral condensate.
- **Confinement requires chiral symmetry breaking**
- Just arguments... No proof...

Two Separate Transitions

Gordon Baym (1982)

"A Long Range Plan"

Taken from 1983andTaken from 2007

Some Highlights

Coincidence for Any Quark Mass

Old Lattice-QCD Data Hands (physics/0105022)

Two-crossovers connected (Fukushima-Hatta 2003)

Coincidence for Any Magnetic Field Recent Lattice-QCD Simulation (M.D'Elia et al)

Magnetic field $eB \sim 0.75 \text{GeV}^2$ should be large enough to affect QCD physics.

Why locked together??

Phase diagram in the *T-B* plane.

FIG. 3: Same as in Fig. 1 for am = 0.01335

```
Change in T_c is 10~20%
```

Finite Density Extension

Interpretation – Quarkyonic Matter Structure of the Fermi Sphere

Ground state of large- N_c quark matter at $\mu_q >> \Lambda_{QCD}$

> McLerran, Pisarski Hidaka, Kojo

Any remnant in N_c=3 world?

Large-N_c-inspired Phase Diagram

Alexi, Alexi

NPA837, 65 (2010) Andronic, Blaschke, Braun-Munzinger, Cleymans, KF, McLerran, Oeschler, Pisarski, Redlich, Sasaki, Satz, Stachel

Experiment Data

ġŔŊĸĊĸġŔŊĸĊĸġŔŊĸĊĸġŔŊĸĊĸġŔŊĿġĊŊŊĿŎŊŊĸĊĸġŔŊĸĊĸġŔŊĸĊĸġŔŊĿŔĸġŔŊĿŔĸġŔŊĿ

Chemical Freeze-out Points from the Statistical Model

NPA837, 65 (2010) Andronic, Blaschke, Braun-Munzinger, Cleymans, KF, McLerran, Oeschler, Pisarski, Redlich, Sasaki, Satz, Stachel

Only available information at finite baryon density

Most important data to analyze the phase diagram

Statistical Model

ಕ್ರಾಮ ಮಾಡಿದ್ದರೆ. ಮಾಡಿದ್ದರೆ, ಮಾಡಿದ ಮಾಡಿದ್ದರೆ, ಮಾಡಿದ್ದರೆ, ಮಾಡಿದ್ದರೆ, ಮಾ

Free stable and unstable hadrons (resonances) at temperature *T*, baryon chemical potential μ_B , strangeness chemical potential μ_s , electric chemical potential μ_Q , where μ_s and μ_Q are constrained by the collision condition.

Contained mesons (blue) and baryons (red): figure from THERMUS2.1 Manual

Success of the Statistical Model Thermal Weight = Particle Yield Ratio

Braun-Munzinger-Magestro-Redlich-Stachel (2001) Andronic-Braun-Munzinger-Stachel (2006)

Different
$$\sqrt{s_{NN}} \rightarrow \text{Different } T \text{ and } \mu_B$$

Freeze-out T and μ_B

Andronic-Braun-Munzinger-Stachel

Freeze-out Criteria

allow allow

 $\langle E \rangle / \langle N \rangle \simeq 1 \text{ GeV}$

Thermodynamic quantities give some conditions that can fit the freeze-out line in the Statistical Model.

Meson-Baryon Crossover

allow allow

What made BNL people excited

Cleymans-Oeschler-Redlich-Weaton (2005)

Triple-point-like Region

Along the freeze-out curve (phase boundary) there is a transitional change from **meson-dominant** to **baryon-dominant** regimes.

Mesonic Hagedorn Transition $Z \sim \int dm \rho(m) e^{-m/T}$ $\rho(m) \sim e^{m/T_{H}}$ $T_{c} = T_{H}$ Baryonic Hagedorn Transition $Z \sim \int dm \rho_{B}(m) e^{-(m_{B} - \mu_{B})/T}$ $\rho(m) \sim e^{m_{B}/T_{B}}$ $T_{c} = (1 - \mu_{B}/m_{B})T_{B}$

Something at Crossover ?

allow allow

Marek's Horn

Chiral Model Study

Advantages

- □ Phase diagram can be drawn by order parameters.
- □ P-models (*PNJL*, *PQM*) can describe the full thermodynamic properties.

Caveats

- □ Model parameters have uncertainty.
- □ Approximations (mean-field) can be overcome by the (functional) renormalization group improvement.

Pure-gluonic Model $(m_q \gg \Lambda_{QCD})$ Ansatz (Polyakov loop ~ A_0) $V(\ell) = -\frac{1}{2}a(T)\ell \bar{\ell} + b(T)\log[1-6\ell \bar{\ell}+4(\ell^3+\bar{\ell}^3)-3(\ell \bar{\ell})^2]$ Vandermonde determinant

= SU(3) Haar measure

Parameters

 $\ell(T)$

p(T)

$$a(T) = T^{4}(3.51 - 2.47t^{-1} + 15.2t^{-2})$$

 $b(T) = -1.75t^{-3} \cdot T^{4}$ 3 (+1) parameters
 $t = T/T_{0}$
Ratti-Thaler-Weise
Ratti-Roessner-Weise

c.f. strong-coupling ansatz $a(T) = T \cdot b \cdot 54 e^{-a/T}$ 2 parameters $b(T) = T \cdot b$ Fukushima

Chiral Model
$$(m_q = m_{phys})$$

Nambu–Jona-Lasinio (NJL) Model
 $L = \bar{\psi}(i\gamma\cdot\partial - m_f) + \frac{g_s}{2}[(\bar{\psi}\lambda\psi)^2 + (\bar{\psi}i\gamma_5\lambda\psi)^2]$
 $+g_D[\det\bar{\psi}(1-\gamma_5)\psi + h.c.]$

Parameters

 $\Lambda = 631.4 \,\mathrm{MeV}$ m_{π} c.f. PQM model $m_{ud} = 5.5 \,\mathrm{MeV}$ f_{π} Schaefer, Wambach $m_s = 135.7 \,\mathrm{MeV}$ m_K m_K $g_S \Lambda^2 = 3.67$ $m_{\eta'}$ one more? M_{ud} or $\langle \bar{\psi} \psi \rangle$ M_{ud} or $\langle \bar{\psi} \psi \rangle$

Coupling (covariant derivative for A_0)

$$2N_{f}\int \frac{d^{3}k}{(2\pi)^{3}} \operatorname{tr}\left[\log\left(1+L \operatorname{e}^{-(E-\mu)/T}\right)+\log\left(1+L^{\dagger} \operatorname{e}^{-(E+\mu)/T}\right)\right]_{2010 \neq 12 \neq 3 \equiv 0}$$

Typical Phase Structure from PNJL Chiral Condensate and Polyakov Loop

Quark Chemical Potential [MeV]

Thermodynamics from the SM

ŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗŔĿŔŊŗŔĿŢŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗĸĿĸŔŊŗ

Results from THERMUS

(Wheaton and Cleymans)

KF (2010)

To discuss the phase diagram, the neutrality conditions are intentionally relaxed (w.r.t. strangeness and electric charge), which are minor effects to the entropy.

Blow-up in entropy should be regarded as "*deconfinement*" intuitively.

Entropy Density

ೆ ಬೆಳೆದವು ಬೆಳೆದವು ಬೆಳೆದ ಬೆಳೆದವು ಬೆಳೆದವು ಬೆಳೆದವು ಬೆಳೆದವು ಬೆಳೆದ

Energy density, baryon density, etc may exceed the free quark-gluon (SB) limit, but the entropy density

$T_o(\mu_{\rm B})$ – Simple Ansatz

ANDAR ANDARAR A

Parametrization for Chemical Freezeout Curve $T_f(\mu_B) = a - b \mu_B^2 - c \mu_B^4$

a = 166(2) MeV $b = 1.39(16) \times 10^{-4} \text{ MeV}^{-1}$ $c = 5.3(21) \times 10^{-11} \text{ MeV}^{-3}$

Cleymans-Oeschler-Redlich-Wheaton (2006)

Assumption for $T_0(\mu)$ (Polyakov-loop behavior) $\frac{T_0(\mu_B)}{T_0(0)} = 1 - (b T_0) \left(\frac{\mu_B}{T_0}\right)^2 = 1 - 2.78 \times 10^{-2} \left(\frac{\mu_B}{T_0}\right)^2$

c.f Perturbative Matching

 $T_{0}(\mu_{B}) = T_{\tau} e^{-1/(\alpha_{0}b(\mu))} \qquad \frac{T_{0}(\mu_{B})}{T_{0}(0)} \simeq 1 - 2.1 \times 10^{-2} \left(\frac{\mu_{B}}{T_{0}}\right)^{2}$

Schaefer-Pawlowski-Wambach

Lattice QCD

$$\frac{T_c(\mu_B)}{T_c(0)} \simeq 1 - 6.8 \times 10^{-3} \left(\frac{\mu_B}{T_0}\right)^2$$

Curvature $\sim 1/3$

de Forcrand

Phase Boundaries

Matching in Thermodynamics

P and CP Violation in the YM Theory Gauge Actions

 \mathcal{P} - and \mathcal{CP} - even (*T*-even) terms

$$F_{\mu\nu}F^{\mu\nu} = 2F_{0i}F^{0i} + F_{ij}F^{ij}$$

Even w.r.t. spatial and temporal indices

 \mathcal{P} - and \mathcal{CP} - odd (\mathcal{T} -odd) terms

$$F_{\mu\nu}\tilde{F}^{\mu\nu} = 2F_{01}F^{23} + 2F_{02}F^{31} + 2F_{03}F^{12}$$

Odd w.r.t. spatial and temporal indices

Finite-*θ* Hadronic World

θ can be eliminated by U(1)_A rotation

One solution to the strong CP problem is the presence of massless quarks (almost excluded...)

Effect of strong θ **-angle to hadron physics**

$$U \rightarrow e^{i\theta} U$$

Scalar meson

 $\sigma \sim \overline{\psi} \psi \rightarrow \overline{\psi} e^{i \gamma_5 \theta} \psi \sim \sigma \cos(\theta) + \eta_0 \sin(\theta)$

Pseudo-scalar meson

 $\eta_0 \sim \overline{\psi} i \gamma_5 \psi \rightarrow \overline{\psi} e^{i \gamma_5 \theta} i \gamma_5 \psi \sim \eta_0 \cos(\theta) - \sigma \sin(\theta)$

 η_0 may condense in addition to the chiral σ condensate 2010年12月3日@駒場

Possibility for Finite η₀ Condensate If U(1)_Δ symmetry is NOT broken

 σ and η are degenerate (η may have a chance as much as the σ condensate develops)

U(1)_A is broken but can be "effectively" restored

U(1)_A-breaking effective interaction is induced by the topological susceptibility Veneziano-Di Vecchia

Relativistic Heavy-Ion Collisions

Heavy-Ion (nucleus) Au, Pb, Cu, ...

 $\sqrt{s_{NN}} = 200 \,\mathrm{GeV}$, 62 GeV,...

Quark-Gluon Plasma Baym Shuryak

Direct photon measurement (not from π^0 , η' etc) \rightarrow Initial $T \sim 4 \times 10^{12}$ K \sim GeV

c.f. $T_{\rm c} \sim \Lambda_{\rm QCD}$ $\rho \sim 0.3 \,\rm{fm}$

Topological Excitations in high-TQCD Instantons in Euclidean (θ-vacuum)

Instantons are exponentially suppressed at high T.

$$n(T) = \left(\frac{8\pi^2}{g^2}\rho^{-5}e^{-8\pi^2/g^2(\rho)}\right) \exp\left[-\pi^2\rho^2 T^2\left(\frac{2N_c + N_f}{3}\right)\right]$$

Sphalerons in Minkowskian

Sphalerons are parametrically enhanced at high *T*.

$$\Gamma \sim \alpha_s^5 T^4$$

QCD sphalerons are abundant in hot and dense matter created in the relativistic heavy-ion collisions

Arnold-McLerran (1987)

$$\begin{aligned} & \Gamma = \frac{1}{2} \lim_{t \to \infty} \lim_{V \to \infty} \int d^4 x \langle q(x) q(0) + q(0) q(x) \rangle \\ & \langle Q^2 \rangle = 2 \Gamma V t \\ & \text{Random Walk at Finite } T \end{aligned}$$

In the strong-coupling AdS/CFT by Son and Starinets (hep-th/0205051)

$$\Gamma = \frac{(g_{\rm YM}^2 N)^2}{256 \,\pi^3} T^4$$

In the weak-coupling perturbation by Arnold, Son, Yaffe, Bodeker, Moore, etc

$$\Gamma = \operatorname{const} \cdot (g_{\rm YM}^2 N)^5 \ln \frac{1}{g_{\rm YM}^2 N} T^4$$

Sphaleron in Pendulum

Simplest Example

Chern-Simons number $x(t)/2\pi$ Topological charge $Q = \frac{1}{2\pi} \int_0^\beta d\tau \dot{x}$

Topological Rate in Real- and Imaginary-Time ಜನ್ ಮತ್ತಿದ್ದಾರೆ. ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರ **Pendulum** (Arnold-McLerran) ∨(x) sphaleron Chern-Simons number $x(t)/2\pi$ Topological charge $Q = \frac{1}{2\pi} \int_{0}^{\beta} d\tau \dot{x}$ sp -27 27 0 Finite-*T* Euclidean Action $S_E = \int_0^\beta d\tau \left(\frac{1}{2}\dot{x}^2 + i\frac{\theta}{2\pi}\dot{x}\right)$ Topological Susceptibility (Diffusion Rate) $A(t) = \left(T \left(\frac{x(t) - x(0)}{2\pi} \right)^2 \right)$ Real-time (classical approx.) $A(t) \simeq \frac{t^2}{\Lambda \pi^2} \overline{v}^2 = \frac{t^2}{\Lambda \pi^2 \rho}$ Imaginary-time $A(-i\beta) = \langle Q^2 \rangle \simeq 2 \exp[-2\pi^2/\beta] \cos\theta$

Analytical Continuation

Diffusion Rate at High *T*

$$\begin{split} A(t) &= \left\langle T\left(\frac{\delta x(t) - \delta x(0)}{2\pi}\right)^2 \right\rangle + O(e^{-2\pi^2/\beta}) \\ &= \frac{1}{4\pi^2 m} \left(\frac{\exp(-im|t|) - 1}{\exp(-\beta m) - 1} - \frac{\exp(im|t|) - 1}{\exp(\beta m) - 1}\right) + O(e^{-2\pi^2/\beta}) \\ &\to \frac{1}{4\pi^2} \left(\frac{t^2}{\beta} + it\right) + O(e^{-2\pi^2/\beta}) \end{split}$$

 $A(t=-i\beta) \rightarrow O(e^{-2\pi^2/\beta})$

Instantons (Euclidean windings) are suppressed at high *T* but communications in real time are not and dominated by the contribution from the zero-winding sector.

Non-Central Collision

Before Collision (seen from above)

Centrality is determined by N_{part}

Non-Central Collision

After Collision

Estimated Magnetic Fields

ĦĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŔĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿŴĿŢŔĨŊĿ

How Big?

 $eB \sim m_{\pi}^{2} \rightarrow 10^{18} \text{ Gauss}$

Neutron Star (Magnetar)

Anomaly Relations

Induced N_5 by topological effects

$$\frac{dN_5}{dt} = -\frac{g^2 N_f}{8\pi^2} \int d^3 x \, \text{tr} \, F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad \text{QCD Anomaly Relation}$$

Grand canonical ensemble with μ_5 to describe induced N_5

Induced J by the presence of N_5 and B

$$j = \frac{e^2 \mu_5}{2 \pi^2} B$$
QED Anomaly Relation
$$\left(j = \sum_{i=\text{flavor}} \frac{q_i^2 \mu_5}{2 \pi^2} B \text{ in QCD}\right)$$
Metlitski-Zhitnitsky (2005)

Metlitski-Zhitnitsky (2005) Fukushima-Kharzeev-Warringa (2008) $\begin{aligned} & \textbf{Derivation (naïve calculation)} \\ & \textbf{Thermodynamic Potential (UV divergent)} \\ & \Omega = -V N_c \sum_{f} \frac{|q_f B|}{2\pi} \sum_{s=\pm}^{\infty} \sum_{n=0}^{\infty} \alpha_{n,s}^{f} \int \frac{dp_3}{2\pi} [\omega_{n,s} + 2T \ln(1 + e^{-\beta \omega_{n,s}})] \\ & \omega_{n,s}^2 = \left(\sqrt{p_3^2 + 2|q_f B|} n + \operatorname{sgn}(p_3) s \, \mu_5\right)^2 + m^2 \qquad \alpha_{n,s} = \begin{cases} 1 & n > 0, \\ \delta_{s+} & n = 0, eB > 0, \\ \delta_{s-} & n = 0, eB < 0 \end{cases} \end{aligned}$

Current (UV finite)

Space-time dependent θ -angle $\gamma \cdot \partial \psi \rightarrow \gamma \cdot \partial \left(e^{i\gamma_5 \theta/2N_f} \psi \right) = e^{i\gamma_5 \theta/2N_f} \left(\gamma \cdot \partial + i \left(\gamma \cdot \partial \theta/2N_f \right) \gamma_5 \right) \psi$ $\partial_0 \theta/2N_f = \mu_5 \neq 0$ $N_5 = N_R - N_L \neq 0$ Coupling between B and θ Maxwell-Chern-Simons theory

Gauss' law $\vec{\nabla} \cdot \vec{E} = \rho + \vec{\nabla} \theta \cdot \vec{B}$ Ampere's law $\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{j} + \left[(\partial_0 \theta) \vec{B} - (\vec{\nabla} \theta) \times \vec{E} \right]$

Faraday's law

$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

B (from QED) + θ (from QCD)

Gauss' law for magnetism

$$\vec{\nabla} \cdot \vec{B} = 0$$

Charge Separation

ANDER ANDER

Charge Asymmetry in HIC Measured multiplicity

 $\frac{dN_{\pm}}{d\phi} \propto 1 + 2v_{1\pm}\cos(\Delta\phi) + 2a_{\pm}\sin(\Delta\phi) + 2v_{2\pm}\cos(2\Delta\phi) + \dots$

a : Charge Asymmetry \leftarrow Vanishing on Average

Observable by STAR

ALPANAL PARANAL PARANA PARANA

Observable (fluctuation measurement)

$$\langle\!\langle \cos(\Delta\phi_{\alpha} + \Delta\phi_{\beta}) \rangle\!\rangle \equiv \left\langle\!\left\langle \frac{1}{N_{\alpha}N_{\beta}} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} \cos(\Delta\phi_{\alpha,i} + \Delta\phi_{\beta,j}) \right\rangle\!\right\rangle = \left\langle\!\langle \cos\Delta\phi_{\alpha}\cos\Delta\phi_{\beta} \rangle\!\rangle - \left\langle\!\langle \sin\Delta\phi_{\alpha}\sin\Delta\phi_{\beta} \rangle\!\right\rangle = \left(\left\langle\!\langle v_{1,\alpha}v_{1,\beta} \rangle\!\rangle + B_{\alpha\beta}^{\mathrm{in}}\right) - \left(\left\langle\!\langle a_{\alpha}a_{\beta} \rangle\!\rangle + B_{\alpha\beta}^{\mathrm{out}}\right). \right)$$

Confirmation by PHENIX

Good agreement between STAR and PHENIX

Not conclusive – Backgrounds from Flow, Decay, etc

Multi-Particle Correlation

Two Distribution Functions

Preliminary Data (in favor of CME)

Charge Asymmetry from Current

Induced charge asymmetries

$$\sum_{i=1}^{N_{+}} \cos \Delta \phi_{+,i} \approx -\sum_{i=1}^{N_{-}} \cos \Delta \phi_{-,i} \propto J_{x}$$
$$\sum_{j=1}^{N_{+}} \sin \Delta \phi_{+,j} \approx -\sum_{i=1}^{N_{-}} \sin \Delta \phi_{-,i} \propto J_{z}$$

Induced charge asymmetry fluctuations

Experimentally observed quantity $\langle J_{\parallel}^2 \rangle_{\mu_5} = \langle J_{\parallel} \rangle_{\mu_5}^2 + \chi_{\mu_5}^{\parallel}, \qquad \langle J_{\perp}^2 \rangle_{\mu_5} = \langle J_{\perp} \rangle_{\mu_5}^2 + \chi_{\mu_5}^{\perp}$

Current squared + Current-current Susceptibility

One-Loop Computation

Diagrammatic Expression

$$\chi_{i} = \mathrm{i} VTN_{c} \sum_{f} \frac{q_{f}^{2} |q_{f}B|}{2\pi} \sum_{k,l} \int \frac{\mathrm{d}p_{z}}{2\pi} \int^{T} \frac{\mathrm{d}p_{0}}{2\pi} \int \mathrm{d}x \,\mathrm{d}y$$
$$\times \mathrm{tr} \left[\gamma^{i} P_{k}(x) (\not p + \mu_{5} \gamma^{0} \gamma^{5} - M_{f})^{-1} (\Gamma_{+}(\tilde{p}) + \Gamma_{-}(\tilde{p})) P_{k}(y) \right]$$
$$\times \gamma^{i} P_{l}(y) (\not q + \mu_{5} \gamma^{0} \gamma^{5} - M_{f})^{-1} (\Gamma_{+}(\tilde{q}) + \Gamma_{-}(\tilde{q})) P_{l}(x) \right]$$

Linear Response Argument

Current generation rateKF-Kharzeev-Warringa= Anomaly rate (Schwinger process)

$$\left\langle \frac{\mathrm{d}J_{\parallel}}{\mathrm{d}x_0} \right\rangle = V N_c \sum_f \frac{q_f^2 |q_f B| E}{2\pi^2} + O(E^2)$$

Linear response theory

$$\left\langle \frac{\mathrm{d}J_{\parallel}}{\mathrm{d}x_{0}} \right\rangle = -\int \mathrm{d}^{3}x \,\mathrm{d}^{4}x' \left\langle \frac{\mathrm{d}j_{\parallel}(x)}{\mathrm{d}x_{0}} j_{\parallel}(x') \right\rangle_{\mathrm{ret}} A_{z}(x') + O(A_{z}^{2})$$

Integration by parts in the gauge $(d/dx_0)A_z = E_z$ $\left\langle \frac{\mathrm{d}J_{\parallel}}{\mathrm{d}x_0} \right\rangle = \int \mathrm{d}^3x \,\mathrm{d}^4x' \,\langle j_{\parallel}(x)j_{\parallel}(x')\rangle_{\mathrm{ret}}E + O(E^2)$

(Quenched) Lattice QCD

Buividovich, Chernodub, Luschevskaya, Polikarpov (2009)

Dimensional Reduction to (1+1) Vector = Axial-Vector $(\gamma^5 = \gamma^0 \gamma^1)$ $\gamma^{\mu}\gamma^5 = -\epsilon^{\mu\nu}\gamma_{\nu} + j^{\mu}_{\nu} = \bar{\psi}\gamma^{\mu}\psi, \quad j^{\mu}_{A} = \bar{\psi}\gamma^{\mu}\gamma^5\psi$

$$j_{V}^{1} = j_{A}^{0}, \quad j_{A}^{1} = j_{V}^{0}$$

Axial Anomaly in (1+1) Dimensions

$$\partial_{\mu} j_{A}^{\mu} = \frac{e}{2\pi} \epsilon^{\mu\nu} F_{\mu\nu} = \frac{e}{\pi} E$$
$$= -\frac{e}{2\pi} (\partial^{0} A^{1} - \partial^{1} A^{0})$$

Electric Field = Topological Charge Vector Potential = Chern-Simons Current

Trivial Derivation of the Currents

Vector and Axial-Vector Currents

Chiral Magnetic Effect Ohm's law ! $j_V^1 = j_A^0 \rightarrow J_V^1 = N_5 = -2Q_W$ Trivial Chiral Separation Effect the γ -n $j_A^1 = j_V^0 \rightarrow J_A^1 = N$

Trivially derived from the γ -matrix structure

More Familiar Forms using $E=F_{01}$

$$J_{V}^{1} = -\frac{e}{\pi} \int dx \quad A^{1}(t, x) = \frac{1}{\pi} \int dx \quad \mu_{5} \text{ is the longitudinal}$$
$$J_{A}^{1} = -\frac{e}{\pi} \int dx \quad A^{0}(t, x) = \frac{1}{\pi} \int dx \quad \mu \text{ component of the QED}$$
vector potential

Chiral Magnetic Currents Altan Manda, Altan Manda, Alta Alta Altan Manda, Altan Manda, Altan Manda, Alta (1+1) Dimensions \rightarrow (3+1) Dimensions

$$e J_V^1 = \frac{e}{\pi} \int dx \ \mu_5$$
 in (1+1) dimensions

$$e j_V^1 = \frac{e}{\pi} \mu_5 \times \frac{eB}{2\pi} = \frac{e^2 \mu_5}{2\pi^2} B$$
 in (3+

1) dimensions

Current Generation Rate

Instanton Configuration

$$A^{1}(t) = -Et \quad \left(= \frac{2\pi Q_{W}}{eL} \frac{t}{T} \right) \qquad \Longrightarrow \qquad \frac{\partial}{\partial t} e j^{1}(t) = \frac{e^{2}E}{\pi} \quad \text{in (1+1)}$$

$$J^{1}_{V} = -\frac{e}{\pi} \int dx \quad A^{1}(t, x) \qquad \qquad \qquad \frac{\partial}{\partial t} e j^{1}(t) = \frac{e^{3}EB}{2\pi^{2}} \quad \text{in (3+1)}$$
Anomaly Rate

ムリコリキュム月コロ 巡測物

Results in (1+1) Dimensions

One-loop Calculation

$$\sqrt{\chi} \qquad \chi^{\text{one-loop}} = \frac{e^2}{\pi} \qquad \left(\frac{e^3 B}{2 \pi^2} \quad \text{in (3+1)}\right)$$

known as the "mass" in the Schwinger model

Full-order Calculation (in (1+1))

$$\chi^{\text{full-order}}(\omega, k) = \frac{e^2}{\pi} \frac{\omega^2}{\omega^2 - k^2 - e^2/\pi}$$
 Screening by fermion loops

Vanishing in the zero momentum-frequency limit

Summary

CME = Electric current induced by B (fields) and N₅ (chirality from instanton/sphaleron)

All the known expressions related to the CME immediately derived from the (1+1)-dimensional setup.

Electric current-current computation; one-loop result is exactly reproduced ("*Schwinger mass*"). Full-order result is also available but it is under discussions if this can be generalized to (3+1)?