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Chapter I
Introduction
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§ Introduction

The fundamental degrees of freedom of QCD, i.e., quarks and gluons, have never
been observed in experiments.

Only the color singlet combinations, hadrons (mesons and baryons) and glueballs
have been observed so far.

Hadron (Meson, Baryon) and Glueball?

This is color confinement.

Why does color confinement occur?

In particular, what is the mechanism for quark confinement?
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• quark-antiquark potential
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Figure 1: The full SU(2) potential Vf(R) as functions of R at β = 2.4 on 164 lattice.

V (r) = −C
g2
YM(r)

r
+σr =⇒ F (r) = − d

dr
V (r) = −C

g2
YM(r)
r2

−σ+· · · (C, σ > 0) (1)
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§ Dual superconductor picture for confinement
[Nambu, 1974] [’tHooft, 1975][Mandelstam, 1976]

(Left panel) superconductor (Right panel) dual superconductor

Superconductivity (type II)
condensation of electric charges (Cooper pairs)
⇓
Meissner effect:
formation of Abrikosov string (magnetic flux tube)
connecting a monopole m and an anti-monopole m̄
⇓
linear potential between a monopole m and an anti-monopole m̄

m electric-magnetic dual
linear confining potential between q and q̄

⇑
formation of a hadron string (electric flux tube)

connecting q and q̄
dual Meissner effect:
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⇑
condensation of magnetic monopoles

· Dual superconductivity in YM theory !?

D=2: Yang-Mills theory is exactly calculable, V (r) = σr, σ = c2(N)g2

2 = N2−1
2N

g2

2 .

Coulomb potential = linear potential in D=2!

Dual superconductor picture was always valid in the following models where confinement
was shown in the analytical way.

D=3: • compact QED3 in Georgi-Glashow model [Polyakov, 1977]

→ magnetic monopole plasma, sine-Gordon theory described by the dual variable

D=4: • (Lattice) compact QED4 (in the strong coupling region) [Polyakov, 1975]

→ magnetic monopole plasma ;

U(1) link variable → monopole current variable [Banks, Myerson and Kogut, 1977]

• N=2 SUSY YM4 [Seiberg and Witten, 1994] ...

How about YM3, YM4 and QCD4? Can we introduce magnetic monopoles in these
theories? Abelian projection, partial gauge fixing [G. ’t Hooft, 1981]
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§ Abelian projection and magnetic monopole

Consider the (pure) Yang-Mills theory with the gauge group G = SU(N) on RD.

(1) Let χ(x) be a Lie-algebra G -valued functional of the Yang-Mills field Aµ(x). Suppose
that it transforms in the adjoint representation under the gauge transformation:

χ(x) → χ′(x) := U(x)χ(x)U†(x) ∈ G = su(N), U(x) ∈ G, x ∈ RD. (1)

(2) Diagonalize the Hermitian χ(x) by choosing a suitable unitary matrix U(x) ∈ G

χ′(x) = diag(λ1(x), λ2(x), · · · , λN(x)). (2)

This is regarded as a a partial gauge fixing, if χ(x) is a gauge-dependent quantity.

(2a) At non-degenerate points x ∈ RD of spacetime, the gauge group G is partially
fixed, leaving a subgroup H unfixed, i.e., a partial gauge fixing:

G = SU(N) → H = U(1)N−1 ×Weyl. (3)

(2b) At degenerate points x0 ∈ RD, λj(x0) = λk(x0) (j 6= k = 1, · · · , N), a magnetic
monopole appears in the diagonal part of Aµ(x) (defects of gauge fixing procedure).
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G = SU(N) non-Abelian Yang-Mills field
→ H = U(1)N−1 Abelian gauge field + magnetic monopoles + electrically charged
matter field [’t Hooft, 1981] e.g., χ(x) = F12(x), F 2

µν, Fµν(x)D2Fµν(x)

Proof) G=SU(2).
(a) For non-degenerate points, the residual symmetry U(1) exists: U(x) =
diag.(eiθ1(x), eiθ2(x)) does not change the diagonal form. (detU(x) = 1 ⇐⇒∑2

j=1 θj(x) = 0) For the Cartan decomposition

Aµ =A3
µH1 + W ∗

µẼ+ + WµẼ− =
1
2

(
A3

µ

√
2Wµ

∗√
2Wµ −A3

µ

)
,

Wµ =
1√
2
(A1

µ + iA2
µ), H1 = T 3, Ẽ± =

1√
2
(T 1 ± iT 2), TA = σA/2 (4)

the gauge transformation by the Cartan subgroup U = exp (−igθH1) reads

Aµ
′ = U

(
Aµ + ig−1∂µ

)
U† = (A3

µ + ∂µθ)H1 + e−igθW ∗
µẼ+ + eigθWµẼ− (5)

This implies the gauge transformation law

A3
µ
′ = A3

µ + ∂µθ, Wµ
′ = eigθWµ, W ∗

µ
′ = e−igθW ∗

µ , (6)
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(b) For a given Hermitian and traceless matrix: χ(x) := χA(x)σA/2,

eigenvalues λ1(x) = −
√

χA(x)χA(x)/2, λ2(x) = +
√

χA(x)χA(x)/2

The degenerate point x0, i.e., λ1(x0) = λ2(x0), is determined by three equations:

χ1(x0) = χ2(x0) = χ3(x0) = 0 ⇐⇒ χA(x0) = 0 (A = 1, 2, 3)

Then a magnetic monopole appears at zeros x0 of χ(x) as follows. Around the zeros,
χ(x) is expanded as

χ(x) = χA(x)σA/2 = (x− x0)j∂jχA(x0)σA/2 + · · · (7)

The matrix U(x) diagonalizing χ(x) is given by choosing α = ϕ, β = θ, γ = γ(ϕ) in
the Euler angles representation:

U(x) = e−iγ(x)σ3(x)/2e−iβ(x)σ2(x)/2e−iα(x)σ3(x)/2 =

(
e−

i
2(α+γ) cos β

2 −e
i
2(α−γ) sin β

2

e−
i
2(α−γ) sin β

2 e
i
2(α+γ) cos β

2

)

(8)
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The diagonal part of

ig−1U(x)∂µU†(x) = g−11
2

(
cos β∂µα + ∂µγ [−i∂µβ − sinβ∂µγ]eiα

[i∂µβ − sin β∂µγ]eiα −[cosβ∂µα + ∂µγ]

)
= V A

µ σA/2

(9)
contains the singular potential of the Dirac type.

V 3
µ = g−1[cos β∂µα + ∂µγ] (10)

In fact, the D = 3 version agrees with the well-known Dirac magnetic potential:

ig−1U(x)∇U†(x) =
σ1

2
g−1

r
[sinϕeθ + cosϕ∂ϕγeϕ]

+
σ2

2
g−1

r
[− cos ϕeθ + sinϕ∂ϕγeϕ]

+
σ3

2
g−1

r

cos θ + ∂ϕγ

sin θ
eϕ (11)

D=3: 0-dimensional point defect → magnetic monopole

D=4: 1-dimensional line defect → magnetic monopole loop (closed string)
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§ Maximal Abelian gauge (MAG) and magnetic
monopoles

• quark confinement follows from the area law of the Wilson loop average [Wilson,1974]

Non-Abelian Wilson loop
〈
tr

[
P exp

{
ig

∮

C

dxµAµ(x)
}] 〉no GF

YM
∼ e−σNA|S|, (1)

• Numerical simulation on the lattice after imposing the Maximal Abelian gauge (MAG):

for the SU(2) Cartan decomposition: Aµ = Aa
µ

σa

2 + A3
µ

σ3

2 (a = 1, 2), Aµ → A3
µ

σ3

2

Abelian-projected Wilson loop
〈

exp
{

ig

∮

C

dxµA3
µ(x)

} 〉MAG

YM
∼ e−σAbel|S| !? (2)

The continuum form of MAG is [∂µδab − gεab3A3
µ(x)]Ab

µ(x) = 0 (a, b = 1, 2).
· Abelian dominance⇔ σAbel ∼ σNA (92±4)% [Suzuki & Yotsuyanagi,PRD42,4257,1990]

A3
µ = Monopole part + Photon part, (3)

· Monopole dominance ⇔ σmonopole ∼ σAbel (95)%
[Stack, Neiman and Wensley, hep-lat/9404014][Shiba & Suzuki, hep-lat/9404015]
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Maximal Abelian gauge ≡ a partial gauge fixing G = SU(N) → H = U(1)N−1:
the gauge freedom Aµ(x) → A Ω

µ (x) := Ω(x)[Aµ(x) + ig−1∂µ]Ω−1(x) is used to
transform the gauge variable as close as possible to the Abelian components for the
maximal torus subgroup H of the gauge group G.

The magnetic monopole of the Dirac type appears in the diagonal part A3
µ of Aµ(x)

as defects of gauge fixing procedure.

MAG is given by minimizing the function FMAG w.r.t. the gauge transformation Ω.

min
Ω

FMAG[A Ω], FMAG[A ] :=
1
2
(Aa

µ, Aa
µ) =

∫
dDx

1
2
Aa

µ(x)Aa
µ(x) (a = 1, 2) (4)

δωFMAG =(δωAa
µ, Aa

µ) = ((Dµ[A]ω)a, Aa
µ) = −(ωa, Dab

µ [A3]Ab
µ) (5)

The residual U(1) exists.
cf. Lorentz gauge (Landau gauge) G = SU(N) → H = {0}:

min
Ω

FL[A Ω], FL[A ] :=
1
2
(A A

µ , A A
µ ) =

∫
dDx

1
2
A A

µ (x)A A
µ (x) (A = 1, 2, 3) (6)

δωFL =(δωA A
µ , A A

µ ) = ((Dµ[A ]ω)A, A A
µ ) = −(ωA, (Dµ[A ]Aµ)A) = −(ωA, ∂µA A

µ )

δ2
ωFL =− (ωA, ∂µδωA A

µ ) = (ωA, (−∂µDµ[A ])ABωB) FP operator
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¯ Problems:

• The naive Abelian projection and the MAG break SU(2) color symmetry explicitly.

• Abelian dominance has never been observed in gauge fixings other than MAG.

The dual superconductivity might be a gauge artifact?

In order to establish the gauge-invariant dual superconductivity in Yang-Mills theory,
we must answer the questions:

1. How to extract the “Abelian” part responsible for dual superconductivity from the
non-Abelian gauge theory in the gauge-invariant way (without losing characteristic
features of non-Abelian gauge theory, e.g., asymptotic freedom).

2. How to define the magnetic monopole to be condensed in Yang-Mills theory even in
absence of any scalar field in the gauge-invariant way (cf. Georgi-Glashow model).

• Representation dependence is unsettled in the Abelian magnetic monopole scenario
of confinement: The force between quarks depends on their U(1)N−1 electric charges,
rather than their N-ality. The asymptotic string tension between quarks of a given
Abelian charge depends only on that Abelian charge, and not on the quadratic Casimir
or the N-ality of the associated SU(N) representation.
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Chapter II
Wilson loop

and
magnetic monopole

14



§ Wilson loop and magnetic monopole
¯ Non-Abelian Stokes theorem for the Wilson loop

The Wilson loop operator for SU(2) Yang-Mills connection

WC[A ] :=tr
[
P exp

{
ig

∮

C

dxµAµ(x)
}]

/tr(1), Aµ(x) = A A
µ (x)σA/2

The path-ordering P is removed by a non-Abelian Stokes theorem for the Wilson loop
operator in the J representation of SU(2): J = 1/2, 1, 3/2, 2, · · ·
[Diakonov & Petrov, PLB 224, 131 (1989); hep-th/9606104]

WC[A ] :=
∫

dµS(U) exp
{

iJg

∫

Σ:∂Σ=C

dSµνfµν

}
, no path-ordering

fµν(x) :=∂µ[A A
ν (x)nA(x)]− ∂ν[A A

µ (x)nA(x)]− g−1εABCnA(x)∂µnB(x)∂νn
C(x),

nA(x)σA :=U†(x)σ3U(x), U(x) ∈ SU(2) (A,B, C ∈ {1, 2, 3})

and dµS(U) is the product measure of an invariant measure on SU(2)/U(1) over S:

dµS(U) :=
∏

x∈S

dµ(U(x)), dµ(U(x)) =
2J + 1

4π
δ(nA(x)nA(x)− 1)d3n(x).
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¯ The geometric and topological meaning of the Wilson loop operator in D-dim.
Euclidean space [K.-I.K., arXiv:0801.1274, Phys.Rev.D77:085029 (2008)] [K.-I.K., hep-
th/0009152]

WC[A ] =
∫

dµΣ(U) exp {iJg(ΞΣ, k) + iJg(NΣ, j)} , C = ∂Σ

k := δ∗f = ∗df, ΞΣ := δ∗ΘΣ4−1 ← (D-3)-forms

j := δf, NΣ := δΘΣ4−1 ← 1-forms (D-indep.)

Θµν
Σ (x) =

∫

Σ

d2Sµν(x(σ))δD(x− x(σ))

k and j are gauge invariant and conserved currents, δk = 0 = δj.

The magnetic monopole is a topological object of co-dimension 3.
D=3: 0-dimensional point defect → magnetic monopole of Wu-Yang type
D=4: 1-dimensional line defect → magnetic monopole loop (closed loop)

We do not need to use the Abelian projection [’t Hooft,1981] to define magnetic
monopoles in Yang-Mills theory!

The Wilson loop operator knows the (gauge-invariant) magnetic monopole!
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For D = 3,

k(x) =
1
2
εjk`∂`fjk(x) = ρm(x)

denotes the magnetic charge density at x, and

ΞΣ(x) = ΩΣ(x)/(4π)

agrees with the (normalized) solid angle at the point x subtended by the surface Σ
bounding the Wilson loop C. The magnetic part reads

Wm
A := exp {iJg(ΞΣ, k)} = exp

{
iJg

∫
d3xρm(x)

ΩΣ(x)
4π

}

The magnetic charge qm obeys the Dirac-like quantization condition :

qm :=
∫

d3xρm(x) = 4πg−1n (n ∈ Z)

[Proof] The non-Abelian Stokes theorem does not depend on the surface Σ chosen for
spanning the surface bounded by the loop C,
See [K.-I.K., arXiv0801.1274, Phys.Rev.D77:085029 (2008)]
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Quantization condition for the magnetic charge [K.-I.K., arXiv0801.1274[hep-th]]

qm :=
∫

d3xρm(x) = 4πg−1n (n ∈ Z) (1)

the non-Abelian Stokes them does not depend on the surface Σ chosen for spanning
the surface bounded by the loop C,

2πn =
1
2
g

∫
d3xρm(x)

ΩΣ1(x)
4π

− 1
2
g

∫
d3xρm(x)

ΩΣ2(x)
4π

=
1
2
g

∫
d3xρm(x)

ΩΣ1(x)− ΩΣ2(x)
4π

=
1
2
g

∫
d3xρm(x) =

1
2
gqm, (2)

-
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For the ensemble of point-like magnetic charges:

k(x) =
n∑

a=1

qa
mδ(3)(x− za)

=⇒ Wm
A = exp

{
iJ

g

4π

n∑
a=1

qa
mΩΣ(za)

}
= exp

{
iJ

n∑
a=1

naΩΣ(za)

}
, na ∈ Z

The magnetic monopoles in the neighborhood of the Wilson surface Σ (ΩΣ(za) =
±2π) contribute to the Wilson loop

Wm
A =

n∏
a=1

exp(±i2πJna) =

{∏n
a=1(−1)na (J = 1/2, 3/2, · · · )

= 1 (J = 1, 2, · · · )

=⇒ N-ality dependence of the asymptotic string tension
[K.-I. K., arXiv:0802.3829, J.Phys.G35:085001,2008]

Wilson loop operator is a probe of the gauge-invariant magnetic monopole defined
in our formulation. Calculating the Wilson loop average reduces to the summation over
the magnetic monopole charge (D=3) or current (D=4) with a geometric factor, the
solid angle (D=3) or linking number (D=4).
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For D = 4, the magnetic part reads using Ωµ
Σ(x) is the 4-dim. solid angle

Wm
A = exp

{
iJg

∫
d4xΩµ

Σ(x)kµ(x)
}

Suppose the existence of the ensemble of magnetic monopole loops C ′a,

kµ(x) =
n∑

a=1

qa
m

∮

C′a
dyµ

aδ(4)(x− xa), qa
m = 4πg−1na

=⇒ Wm
A =exp

{
iJg

n∑
a=1

qa
mL(Σ, C ′a)

}
= exp

{
4πJi

n∑
a=1

naL(Σ, C ′a)

}
, na ∈ Z

where L(Σ, C ′) is the linking number between the surface Σ and the curve C ′.

L(Σ, C ′) :=
∮

C′
dyµ(τ)Ξµ

Σ(y(τ))

where the curve C ′ is identified with the trajectory of a magnetic monopole and the
surface Σ with the world sheet of a hadron (meson) string for a quark-antiquark pair.
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Chapter III
Reformulating

Yang-Mills theory
based on change of variables
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§ Gauge-independent “Abelian dominance” in the
Wilson loop [K.-I.K. and Shibata, arXiv0801.4203[hep-th]]

We define the gauge-independent “Abelian dominance” in the Wilson loop.
The original gauge field is decomposed

Aµ(x) = Vµ(x) + Xµ(x),

so that Xµ(x) does not contribute to the Wilson loop operator at all, i.e.,

WC[A ] = const.WC[V ], (1)

where Vµ(x) transforms just the same way as Aµ(x) under the gauge transformation.

WC[V ] is written in terms of SU(2) invariant fµν(x) where Fµν[V ](x) = fµν(x)n(x):

WC[V ] = WS[f ] :=
∫

dµS(U) exp
{

iJg

∫

S

dSµνFµν[V ](x) · n(x)
}

. (2)

The color field n(x) denotes a spacetime-dependent embedding of the Abelian direction
into the non-Abelian color space and hence the Abelian direction can vary from point
to point of spacetime.
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A necessary and sufficient condition for the gauge-independent Abelian dominance
for the Wilson loop operator is given by a set of conditions:

(a) 0 = D[V ]
µ n(x) := ∂µn(x)− ig[Vµ(x), n(x)] (3)

(b) 0 = tr {Xµ(x)n(x)} (4)

In the continuum, the gauge field is decomposed such that the Abelian dominance is
given as an exact operator relation, leading to the exact (100%) Abelian dominance.

The conventional Abelian projection is reproduced for the uniform color field

n(x) = σ3/2, or nA(x) = (0, 0, 1), (5)

(b) implies that Xµ(x) is the off-diagonal matrix: Xµ(x) = A a
µ (x)σa

2 (a = 1, 2)
(a) implies that Vµ(x) is the diagonal matrix: Vµ(x) = A 3

µ
σ3
2 .

Thus, Aµ = Vµ(x) + Xµ(x) reduces just to the Cartan decomposition. f = dA3.

WC[A ] = const.WS[f ] ∼= const.WC[A3]. (6)

Therefore, the color field n(x) plays the role of recovering color symmetry which will
be lost by a global (i.e., space-time independent or uniform) choice of the Abelian
direction taken in the conventional approach, e.g., the MA gauge.
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§ Reformulating Yang-Mills theory in terms of new
variables

SU(2) Yang-Mills theory A reformulated Yang-Mills theory
written in terms of ⇐⇒ written in terms of new variables:
AA

µ (x) (A = 1, 2, 3) change of variables nA(x), cµ(x),XA
µ (x) (A = 1, 2, 3)

We introduce a ”color field” n(x) of unit length with three components

n(x) = (n1(x), n2(x), n3(x)), n(x) · n(x) = nA(x)nA(x) = 1

New variables nA(x), cµ(x),XA
µ (x) should be given as functionals of the original AA

µ (x).
Off-shell Cho-Faddeev-Niemi-Shabanov decomposition is reinterpreted as change of
variables from AA

µ (x) to nA(x), cµ(x),XA
µ (x) via the reduction of a gauge symmetry.

Expected role of the color field:

• The color field n(x) plays the role of recovering color symmetry which will be lost
in the conventional approach, e.g., the MA gauge.

• The color field n(x) carries topological defects responsible for non-perturbative
phenomena, e.g., quark confinement.
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Suppose that n(x) is given as a functional of Aµ(x), i.e., n(x) = nA (x). (discussed
later).

By solving two defining equations among Vµ, Xµ and n:

(i) covariant constantness (integrability) of color field n in Vµ: Dµ[V]n(x) = 0 (1)

(ii) orthogonality of Xµ(x) to n(x): Xµ(x) · n(x) = 0 (2)

new variables are obtained

Aµ(x) =Vµ(x) + Xµ(x), (3)

Vµ(x) = cµ(x)n(x) + g−1∂µn(x)× n(x) (4)

cµ(x) = Aµ(x) · n(x), (5)

Xµ(x) = g−1n(x)×Dµ[A]n(x) (Dµ[A] := ∂µ + gAµ×) (6)

This identification was once known as the Cho-Faddeev-Niemi-Shabanov (CFNS)
“decomposition”. Can nA(x), cµ(x),XA

µ (x) are change of variables?

• Counting the degrees of freedom: D-dim. SU(2) Yang-Mills
before A A

µ : 3D total 3D

after nA: 3− 1 = 2 XA
µ : 3D −D = 2D Cµ: D constraintχ = 0: −2 total 3D
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The field strength is rewritten as

Fµν[A] := ∂µAν−∂νAµ +gAµ×Aν = Fµν[V]+Dµ[V]Xν−Dν[V]Xµ +gXµ×Xν (7)

In particular, Fµν[V] is found to be proportional to n:

Fµν[V] := ∂µVν − ∂νVµ + gVµ × Vν = n[∂µcν − ∂νcµ − g−1n · (∂µn× ∂νn)] (8)

with the magnitude:

fµν := n · Fµν[V] = ∂µcν − ∂νcµ − g−1n · (∂µn× ∂νn) (9)

Then we can introduce a candidate of magnetic monopole current by

kµ(x) = ∂ν
∗fµν(x) = (1/2)εµνρσ∂νf

ρσ(x), (10)

Remember this is the same form as the ’tHooft-Polyakov tensor for the magnetic
monopole, provided that the color unit field is the normalized adjoint scalar field in the
Georgi–Glashow model: nA(x) ↔ φ̂A(x) := φA(x)/||φ(x)||.
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The following issues must be fixed to identify the color unit field with the topological
defect such as the magnetic monopole, responsible for confinement.

1. How n(x) is determined from Aµ(x)?

[This was assumed so far. We must give a procedure to achieve this.]

2. How the mismatch between two set of variables is solved?

[The new variables have two extra degrees of freedom which should be eliminated
by imposing appropriate constraints.]

3. How the gauge transformation properties of the new variables are determined to
achieve the expected one?

[If n(x) transforms in the adjoint representation under the gauge transformation,
Gµν(x) becomes gauge invariant.]

All of these problems are simultaneously solved as follows.
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A new viewpoint of the Yang–Mills theory

δθn(x) = gn(x)× θ(x) = gn(x)× θ⊥(x)

δωAµ(x) = Dµ[A]ω(x)

By introducing a color field, the original Yang-Mills (YM) theory is enlarged to the
master Yang–Mills (M-YM) theory with the enlarged gauge symmetry G̃ . By imposing
the reduction condition, it is reduced to the equipollent Yang-Mills theory (YM’) with
the gauge symmetry G′. The overall gauge fixing condition can be imposed without
breaking color symmetry, e.g. Landau gauge.
[K.-I.K., Murakami & Shinohara, hep-th/0504107; Prog.Theor.Phys. 115, 201 (2006).]
[K.-I.K., Murakami & Shinohara, hep-th/0504198; Eur.Phys.C42, 475 (2005)](BRST)
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As a reduction condition, we propose minimizing the functional
∫

dDx1
2g

2X2
µ w.r.t.

enlarged gauge transformations:

min
ω,θ

∫
dDx

1
2
g2X2

µ = min
ω,θ

∫
dDx(Dµ[A]n)2. (1)

Then the infinitesimal variation reads

0 = δω,θ

∫
dDx

1
2
X2

µ = −
∫

dDx(ω⊥ − θ⊥) ·Dµ[V]Xµ. (2)

For ω⊥ 6= θ⊥, the minimizing condition yields the differential form:

χ := Dµ[V]Xµ ≡ 0. (3)

This denotes two conditions, since n(x) · χ(x) = 0 (following from n(x) · Xµ(x) = 0).
For ω⊥ = θ⊥ , the minimizing condition imposes no constraint.

Therefore, if we impose the reduction condition to the master-Yang–Mills
theory, G̃ := SU(2)ω × [SU(2)/U(1)]θ is broken down to the (diagonal) subgroup:
G′ = SU(2)′.
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We have the equipollent Yang–Mills theory with the local gauge symmetry
G′ := SU(2)ω′

local with ω′(x) = (ω‖(x), ω⊥(x) = θ⊥(x)).

G = SU(2)ω
local ↑ G̃ := SU(2)ω

local × [SU(2)/U(1)]θlocal ↓ G′ := SU(2)ω′
local (4)

The reduction condition has another expression in the differential form:

gDµ[V]Xµ = gDµ[A]Xµ = Dµ[A]{n× (Dµ[A]n)} = n× (Dµ[A]Dµ[A]n) = 0 (5)

Thus, n(x) is determined by solving this equation for a given Aµ(x). This determines
the color field n(x) as a functional of a given configuration of Aµ(x).

• Comparison between MAG and reduction condition:

Old MAG leaves local U(1)local(⊂ G = SU(2)local) and global U(1)global unbroken,
but breaks global SU(2)global.

The reduction condition leaves local G’=SU(2)local and global SU(2)global unbroken
(color rotation invariant)
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¯ Gauge transformation of new variables:

δω′n =gn× ω′, (6a)

δω′cµ =n · ∂µω′, (6b)

δω′Xµ =gXµ × ω′, (6c)

=⇒δω′Vµ = Dµ[V]ω′ =⇒ δω′Aµ = Dµ[A]ω′, (6d)

=⇒ δω′Fµν[V] =gFµν[V]× ω′, (6e)

Hence, the inner product fµν = n · Fµν[V] is SU(2)′ invariant.

δω′fµν = 0, fµν = ∂µcν − ∂νcµ − g−1n · (∂µn× ∂νn), cµ = n · Aµ. (7)

and f2
µν = Fµν[V]2 is SU(2)′ invariant: SU(2) invariant ”Abelian” gauge theory!

δω′Fµν[V]2 = δω′f
2
µν =0. (8)

Therefore, we can define the gauge-invariant monopole current by kµ(x) :=
∂ν
∗fµν(x) = (1/2)εµνρσ∂νfρσ(x), Moreover,

δω′X2
µ = 0. (9)
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• Magnetic charge quantization:

n(x) :=




n1(x)
n2(x)
n3(x)


 :=




sinβ(x) cos α(x)
sinβ(x) sin α(x)

cos β(x)


 , (10)

The non-vanishing magnetic charge is obtained without introducing Dirac singularities
in cµ.

gm :=
∫

d3xk0 =
∫

d3x∂i

(
1
2
εijkfjk

)

=
∮

S2
phy

dσjkg
−1n · (∂jn× ∂kn) = g−1

∮

S2
phy

dσjk sin β
∂(β, α)

∂(xj, xk)

=g−1

∮

S2
int

sin βdβdα = 4πg−1n (n = 0,±1, · · · ) (11)

where ∂(β,α)
∂(xµ,xν) is the Jacobian: (xµ, xν) ∈ S2

phy → (β, α) ∈ S2
int ' SU(2)/U(1) and

S2
int is a surface of a unit sphere with area 4π. Hence gm gives a number of times S2

int

is wrapped by a mapping from S2
phys to S2

int. [Π2(SU(2)/U(1)) = Π2(S2) = Z]
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Chapter IV
Lattice reformulation of

Yang-Mills theory
and numerical simulations
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§ Lattice formulation and numerical simulations

• Reformulation of Yang-Mills theory in the continuum spacetime

[K.K., T. Murakami and T. Shinohara, hep-th/0504107 + hep-th/0504198]

• Non-compact lattice formulation
[Kato, K.K., Murakami, Shibata, Shinohara and Ito, hep-lat/0509069]

· generation of color field configuration → Figure

· restoration of color symmetry (global gauge symmetry) → Figure

· gauge-invariant definition of magnetic monopole charge

• Compact lattice formulation:
[Ito, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016]

· magnetic charge quantization subject to Dirac condition ggm/(4π) ∈ Z → Table

· magnetic monopole dominance in the string tension → Table

[Shibata, Kato, K.K., Murakami, Shinohara and Ito, arXiv:0706.2529 [hep-lat]]

MX = 1.2 ∼ 1.3GeV (MA = 0.6GeV? in the Landau gauge) → Figure
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• Magnetic charge quantization:

K(s, µ) := 2πkµ(s) = 1
2εµνρσ∂νΘ̄ρσ(x + µ),

Table 1: Histogram of the magnetic charge (value of K(s, µ)) distribution for new and
old monopoles on 84 lattice at β = 2.35.

Charge Number(new monnopole) Number(old monopole)

-7.5∼-6.5 0 0
-6.5∼-5.5 299 0
-5.5∼-4.5 0 1
-4.5∼-3.5 0 19
-3.5∼-2.5 0 52
-2.5∼-1.5 0 149
-1.5∼-0.5 0 1086
-0.5∼0.5 15786 13801
0.5∼1.5 0 1035
1.5∼2.5 0 173
2.5∼3.5 0 52
3.5∼4.5 0 16
4.5∼5.5 0 0
5.5∼6.5 299 0
6.5∼7.5 0 0

35



• String tension: magnetic monopole dominance

Wm(C) = exp



2πi

∑
s,µ

kµ(s)Ωµ(s)



 ,

Ωµ(s) =
∑

s′
∆−1

L (s− s′)
1
2
εµαβγ∂αSJ

βγ(s′ + µ̂), ∂′βSJ
βγ(s) = Jγ(s), (1)

Vi(R) =− log {〈Wi(R, T )〉 / 〈Wi(R, T − 1)〉} = σiR− αi/R + ci (i = f,m), (2)

Table 2: String tension and Coulomb coefficient I
β σf αf σm αm

2.4(84) 0.065(13) 0.267(33) 0.040(12) 0.030(34)
2.4(164) 0.075(9) 0.23(2) 0.068(2) 0.001(5)

Table 3: String tension and Coulomb coefficient II
MAG+DeGrand–Toussaint (reproduced from [Stack et al., PRD 50, 3399 (1994)]

β σf αf σDTm αDTm

2.4(164) 0.072(3) 0.28(2) 0.068(2) 0.01(1)
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• quark-antiquark potential
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Figure 2: The full SU(2) potential Vf(R), “Abelian” potential Va(R) and the
magnetic–monopole potential Vm(R) as functions of R at β = 2.4 on 164 lattice.
monopole part[Ito, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016]
“Abelian” part[in preparation]

Table 4:
β σf αf σDTm αDTm σa αa

2.4(164) 0.072(3) 0.28(2) 0.068(2) 0.01(1) 0.071(3) 0.12(1)
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§ Adjoint quark potential and String breaking
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Figure 3: S. Kratochvila and Ph. de Forcrand, String breaking with Wilson loops?,
hep-lat/0209094, Nucl.Phys.Proc.Suppl.119:670-672,2003
D=3, G=SU(2); The adjoint and 8

3 fundamental static potentials V (R) vs R. The
horizontal line at 2.06(1) represents twice the energy of a gluelump.
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Figure 4: Our preliminary result.

■ Abelian dominance in the adjoint Wilson loop? ⇒Casimir scaling, string breaking

■ monopole dominance in the adjoint Wilson loop?
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§ Numerical derivation of magnetic monople loops
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Figure 5: Preliminary result.
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Figure 6: Preliminary result.
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Chapter V
The relationship

between magnetic monoole
and instanton, merons, ....
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§ Magnetic loops exist in the topological sector of YM4

In the four-dimensional Euclidean SU(2) Yang-Mills theory, we give a first* (exact)
analytical solution representing circular magnetic monopole loops joining two merons:

Our method reproduces also the previous results based on MAG (MCG) and LAG:
(i) the magnetic straight line can be obtained in the one-instanton or one-meorn
background.
[Chernodub & Gubarev, hep-th/9506026, JETP Lett. 62, 100 (1995).]
[Reinhardt & Tok, hep-th/0011068, Phys.Lett.B505, 131 (2001). hep-th/0009205.]

(ii) the magnetic closed loop can NOT be obtained in the one-instanton background.
[Brower, Orginos & Tan, hep-th/9610101, Phys.Rev.D 55, 6313–6326 (1997)]
[Bruckmann, Heinzl, Vekua & Wipf, hep-th/0007119,Nucl.Phys.B593, 545–561 (2001)]

*[Bruckmann & Hansen, hep-th/0305012, Ann.Phys.308, 201–210 (2003)] QP = ∞
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§ What are merons?

instanton meron

discovered by BPST 1975 DFF 1976
DνFµν = 0 YES YES
self-duality ∗F = F YES NO
Topological charge QP (0),±1,±2, · · · (0),±1/2,±1, · · ·
charge density DP

6ρ4

π2
1

(x2+ρ2)4
1
2δ

4(x− a) + 1
2δ

4(x− b)

solution A A
µ (x) g−1ηA

µν
2(x−a)ν

(x−a)2+ρ2 g−1
[
ηA

µν
(x−a)ν

(x−a)2
+ ηA

µν
(x−b)ν

(x−b)2

]

Euclidean finite action (logarithmic) divergent action
SYM = (8π2/g2)|QP |

tunneling between QP = 0 and QP = ±1 QP = 0 and QP = ±1/2
vacua in the A0 = 0 gauge vacua in the Coulomb gauge

multi-charge solutions Witten, ’t Hooft, ???
Jackiw-Nohl-Rebbi, ADHM not known

Minkowski trivial everywhere regular
finite, non-vanishing action

An instanton dissociates into two merons?
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§ Relevant works (excluding numerical simulations)

papers original configuration dual counterpart method

CG95 one instanton a straight magnetic line MAG (analytical)
BOT96 one instanton no magnetic loop MAG (numerical)
BHVW00 one instanton no magnetic loop LAG (analytical)
RT00 one meron a straight magnetic line LAG (analytical)

BOT96 instaton-antiinstanton a magnetic loop MAG (numerical)
instaton-instaton a magnetic loop MAG (numerical)

RT00 instaton-antiinstanton two magnetic loops LAG (numerical)

Ours KFSS08 one instanton no magnetic loop New (analytical)
0806.3913 one meron a straight magnetic line New (analytical)
[hep-th] two merons circular magnetic loops New (analytical)

CG95=Chernodub & Gubarev, [hep-th/9506026], JETP Lett. 62, 100 (1995).
BOT96=Brower, Orginos & Tan, [hep-th/9610101], Phys.Rev.D 55, 6313–6326 (1997).
BHVW00=Bruckmann, Heinzl, Vekua & Wipf, [hep-th/0007119], Nucl.Phys.B 593,
545–561 (2001). Bruckmann, [hep-th/0011249], JHEP 08, 030 (2001).
RT00=Reinhardt & Tok, Phys.Lett. B505, 131–140 (2001). hep-th/0009205.
BH03=Bruckmann & Hansen, [hep-th/0305012], Ann.Phys. 308, 201–210 (2003).
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§ Derivation of RDE
Consider the enlarged gauge transformation for δAµ and δφ given by

δωAµ(x) =Dµ[A]ω(x), δθφ(x) = gφ(x)× θ⊥(x) (ω ∈ SU(2), θ⊥ ∈ SU(2)/U(1)),

We minimize the functional F [A, φ] =
∫

dDx1
2(Dµ[A]φ) · (Dµ[A]φ), with respect to

the enlarged gauge transformation as

0 = δF [A, φ] = g

∫
dDx(Dµ[A]φ) ·Dµ[A]{φ× (θ⊥ − ω⊥)}.

The integration by parts yields

0 = δF [A, φ] = g

∫
dDx(θ⊥ − ω⊥) · (φ×Dµ[A]Dµ[A]φ) .

Therefore, this functional is invariant if ω⊥ = θ⊥. Thus, if θ⊥ 6= ω⊥, the minimization
of the functional is achieved by φ and A satisfying the differential equation:

φ×Dµ[A]Dµ[A]φ = 0.

This equation gives two conditions, since it is perpendicular to φ(x).
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§ Bridge between Aµ(x) and n(x)
For a given Yang-Mills field Aµ(x), the color field n(x) is obtained by solving the
reduction differential equation (RDE):

n(x)×Dµ[A]Dµ[A]n(x) = 0.

[K.-I. K., Shinohara & Murakami, 0803.1076, Prog. Theor. Phys. 120,1–50 (2008) ]
For a given SU(2) Yang-Mills field Aµ(x) = AA

µ (x)σA
2 , look for unit vector fields

n(x) such that −Dµ[A]Dµ[A]n(x) is proportional to n(x): an eigenvalue-like form:

−Dµ[A]Dµ[A]n(x) = λ(x)n(x) (λ(x) ≥ 0).

The solution is not unique. Choose the solution giving the smallest value of the
reduction functional Frc: integral of the scalar function λ(x) over the spacetime RD:

Frc =
∫

dDx
1
2
(Dµ[A]n(x)) · (Dµ[A]n(x))

=
∫

dDx
1
2
n(x) · (−Dµ[A]Dµ[A]n(x))

=
∫

dDx
1
2
n(x) · λ(x)n(x) =

∫
dDx

1
2
λ(x).
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We adopt the CFtHW Ansatz:

gAµ(x) =
σA

2
gAA

µ (x) =
σA

2
ηA

µνfν(x), fν(x) := ∂ν lnΦ(x) = xνf(x),

The new form of the RDE reduces to

{−∂µ∂µδAB + 2f(x)(J2 − L2 − S2)AB + x2f2(x)(S2)AB}nB(x) = λ(x)nA(x),

LA := − i

2
ηA

µνxµ∂ν, (SA)BC := iεABC, JA := LA + SA,

A complete set of commuting observables is given by the Casimir operators, ~J2, ~L2, ~S2

and their projections, e.g., Jz, Lz, Sz.

Separating R4 into the radial and angular parts:

R :=
√

xµxµ ∈ R+, x̂µ := xµ/R ∈ S3,

n(x) is constructed from the vector spherical harmonics Y A
(J,L)(x̂), a polynomial in x̂ of

degree 2L with (2J + 1)(2L + 1) fold generacy.
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§ Merons and instantons [DeAlfaro, Fubini and Furlan, 1976, 1977]

One meron solution at the origin x = 0 (non pure gauge everywhere)

AM
µ (x) = g−1ηA

µν

xν

x2

σA

2
=

1
2
ig−1U(x)∂µU−1(x), U(x) =

ēαxα√
x2

∈ SU(2)

DP (x) :=
1

16π2
tr(Fµν ∗ Fµν) =

1
2
δ4(x), Qp :=

∫
d4xDP (x) =

1
2
.

↓ Conformal transformation : xµ → zµ = 2a2(x + a)µ

(x + a)2
− aµ,

meron-antimeron solution (one meron at x = a and one antimeron at x = −a)

AM
µ (x) → ∂µzνAM

ν (z) = complicated expressions

↓ Singular gauge transformation : U(x + a),
meron-meron or dimeron solution (one meron at x = a and another meron at x = −a)

AMM
µ (x) = −g−1

[
ηA

µν

(x + a)ν

(x + a)2
+ ηA

µν

(x− a)ν

(x− a)2

]
σA

2
, DP (x) =

1
2
δ4(x+a)+

1
2
δ4(x−a)

For a → 0, AMM
µ (x) → one-instanton in the regular gauge with zero size g−1ηA

µν
2xν
x2 .
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§ One-instanton and one-meron
¯ For one-instanton in the regular gauge with zero size, the solution is 3-fold
(âB,B=1,2,3) degenerate ((J, L) = (0, 1)), a linear combination of the standard Hopf
map:

nA(x) =
∑

B=1,2,3

âB

∑

α,β,γ=1,2,3,4

x̂αx̂βη̄B
αγηA

γβ, λ(x) = 0, x̂µ := xµ/
√

x2

The standard Hopf map is singular only at the ceter of the instanton. Therefore, kµ is
non-zero only at the ceter of the instanton and there is no magnetic monopole loop.

¯ For one-instanton in the singular gauge with zero size, the solution is 3-fold degenerate
((J, L) = (1, 0))

nA(x) = cA, λ(x) = 0

¯ For one-meron, the solution is 4-fold degenerate ((J, L) = (1/2, 1/2)) 4d hedgehog:

nA(x) =
∑

ν=1,2,3,4

bν

∑
µ=1,2,3,4

ηA
µνx̂µ/

√
b2 − (b · x̂)2, λ(1/2,1/2)(x) =

2(b · x)2

x2[b2x2 − (b · x)2]

kµ denotes a straight magnetic line going through the center of the meron in the
direction bµ. The solution of RDE is not unique. The Hopf map is also a solution of
RDE with λ(0,1)(x) = 2

x2, but it is excluded, since it gives larger Frc =
∫

d4xλ(x).
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§ (UV) Smeared meron pair [Callan, Dashen and Gross, 1978]

d
I

II

III

R

R

1

2

0

I’III’
II’

Figure 7: The concentric sphere geometry for a smeared meron (left panel) is
transformed to the smeared two meron configuration (right panel) by the conformal
transformation including the inversion about the point d.

AsMM
µ (x) =

σA

2
ηA

µνxν ×





2
x2+R2

1
I:
√

x2 < R1 =⇒ QI
P = 1

2

1
x2 II: R1 <

√
x2 < R2 =⇒ QII

P = 0
2

x2+R2
2

III:
√

x2 > R2 =⇒ QIII
P = 1

2

,

SsMM
YM =

8π2

g2
+

3π2

g2
ln

R2

R1
, ,

One-instanton limit: |R1 −R2| ↓ 0 (R2/R1 ↓ 1). SsMM
YM = 8π2

g2 finite

One-meron limit: R2 ↑ ∞ or R1 ↓ 0 (R2/R1 ↑ ∞). SsMM
YM logarithmic divergence
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§ Circular magnetic monopole loops joining the UV
smeared meron pair
The RDE is conformal covariant and gauge covariant, while the reduction functional is
conformal invariant and gauge invariant.
The minimum of the reduction functional is achieved by the solution

λ(x) =





8x2

(x2+R2
1)

2 I: 0 <
√

x2 < R1; nI(x) = Y(1,0) = const.

2(b̂·x)2

x2[x2−(b̂·x)2]
II: R1 <

√
x2 < R2; nII(x) ' Y(1/2,1/2) = hedgehog

8R2
2

x2(x2+R2
2)

2 III: R2 <
√

x2; nIII(x) = Y(0,1)(x) = Hopf

.

Frc =
∫

R4
d4xλ(x) < ∞ for R1, R2 > 0.

Using the conformal transformation and the singular gauge transformation,

n̄(x)II′ =
2a2

(x + a)2
b̂νη

A
µνzµU−1(x + a)σAU(x + a)/

√
z2 − (b̂ · z)2,

where

zµ = 2a2(x + a)µ

(x + a)2
− aµ, U(x + a) =

ēα(x + a)α√
(x + a)2

,
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Without loss of generality, we can fix the direction of connecting two merons as
aµ := dµ/2 = δµ4T .

If b̂µ is parallel to aµ, i.e., b̂µ = δµ4 (or b̂ = 0),

xA = 0 (A = 1, 2, 3) (1)

i.e., the magnetic current is a straight line going through two merons at (0,±T ).
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If b̂µ is perpendicular to aµ (or b̂µ = δµ`b̂`, ` = 1, 2, 3), i.e., b̂4 = 0,

x2
` + x2

4 = a2. (2)

a circular magnetic monopole loop with its center at the origin 0 in z space and the
radius

√
a2 joining two merons at (0,±T ) exists on the plane spanned by aµ and b̂`

(` = 1, 2, 3).
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Other chices of b̂µ = (b̂, b̂4)

x× b̂ = 0 &

(
x +

a · b̂
|b̂|

b̂

|b̂|

)2

+ x2
4 =

(
a2 +

(a · b̂)2
|b̂|2

)
, (3)

where b̂ is the three-dimensional part of unit four b̂µ (b̂µb̂µ = b̂2
4 + |b̂|2 = 1).

These equations express circular magnetic monopole loops

the center at x = −a·b̂
|b̂|

b̂
|b̂|, x4 = 0 with the radius

√
a2 + (a·b̂)2

|b̂|2 (≥
√

a2)

joining two merons at ±aµ on the plane specified by aµ and b̂
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§ Numerical derivation of magnetic monople loops
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Figure 8: Numerical derivation of magnetic monople loops in the topological
background, Preliminary result (in the last week)
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§ Conclusion and discussion

We have developed a reformulation of the Yang-Mills theory based on change
of variables (a la Cho-Faddeev-Niemi) and a non-Abelian Stokes theorem (of the
Diakonov-Petrov type).

In the four-dimensional Euclidean SU(2) Yang-Mills theory,
(1) we have confirmed a gauge-independent “Abelian” Dominance and magnetic

monopole dominance in the Wilson loop average.
(2) we have given a first analytical solution representing circular magnetic monopole

loops which goes through a pair of merons (with a unit topological charge) with
non-trivial linking with the Wilson surface Σ.
This is achieved by solving the reduction differential equation for the adjoint color
(magnetic monopole) field in the two–meron background field.
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We do not need to use the Abelian projection to define magnetic monopoles in
Yang-Mills theory!

Our analytical solution corresponds to a numerical solution found on a lattice in
[Montero and J.W. Negele, hep-lat/0202023, Phys.Lett.B533, 322-329 (2002).]
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We have not yet obtained the analytic solution representing magnetic loops in the
2-instanton background which were found in the numerical way in
[Reinhardt & Tok, hep-th/0011068, Phys.Lett.B505, 131–140 (2001)]
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Figure 12: Plot of the two magnetic monopole loops for the gauge potential (??) projected onto the x1−x2−x0-space

(dropping the x3-component). Rotations with angle π around the x1- , x2- and x3-axis interchange the different monopole

branches. The thick dots show the positions of the instantons.

Conjecture: A meron pair is the most relevant quark confiner in the original
Yang-Mills theory, as Callan, Dashen and Gross suggested long ago.

dual Yang-Mills: magnetic monopole loops
⇐⇒ original Yang-Mills: merons

62



¯ Subjects to be investigated:

• Extending our results to SU(3):

· Continuum formulation
[K.-I. K., arXiv:0801.1274, Phys. Rev. D 77, 085029 (2008)]
[K.-I. K., Shinohara & Murakami, 0803.0176, Prog. Theor. Phys. 120, 1–50 (2008)]
For the Wilson loop in the fundamental rep.,

n ∈ SU(3)/U(2) 6= SU(3)/[U(1)× U(1)]

Quarks in the fundamental rep. can be confined by a non-Abelian magnetic monopole
described by a single color field for any N in SU(N) against the Abelian projection
scenario.

· Lattice formulation [K-I.K., Shibata, Shinohara, Murakami, Kato and Ito,
arXiv:0803.2451 [hep-lat]]
Preliminary numerical simulations e-Print: arXiv:0810.0956 [hep-lat] (Lattice 2008)

• Relationship between other topological objects: For gauge-invariant vortices equivalent
to center vortices,
[K.-I. K., arXiv:0802.3829 [hep-th], J. Phys. G: Nucl. Part. Phys. 35, 085001 (2008)]
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• Clarifying the role of elliptic solutions interpolating dimeron and one-instanton:
Cervero, Jacobs & Nohl (1977). one-parameter family of solutions,
k=0: meron, k=1: instanton
dissociation of an instanton into two merons?

• Derive magnetic monopole loops in the multi-instanton background found in

Reinhardt and Tok, [hep-th/0011068], Phys.Lett.B 505, 131–140 (2001).

• Obtaining the integration measure for collective coordinates:
of circular magnetic monopole loops

• Considering the relationship with the Gribov problem:
non-trivial Coulomb gauge vacua with QP = ±1/2

• D-brane intepretation: D-0 brane ↔ meron

Drukker, Gross and Itzhaki, [hep-th/0004131], Phys.Rev.D62,086007 (2000).

• Evaluating the Wilson loop average from the linking number

64



• color confinement

It is desirable to make clear the relationship between color confinement in general
and quark confinement based on dual superconductor picture. Our approach opens a
path to investigate this issue, since we have recovered color symmetry in this approach
of deriving the dual superconductor picture.

• Chiral symmetry breaking

The massive Xµ gluon exchange between quarks leads to an effective four-fermion
interactions. This could lead to the spontaneous chiral symmetry breaking, just as in
the Nambu–Jona-Lasinio model.
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Thank you for your attention!
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