session iii

Wilson loop in AdS/CFT

December 9th 2009
Junichiro Noguchi
string theory \cdots a candidate of an unified theory for 4 interactions

$$
\left\{\begin{array}{l}
\text { open strings } \cdots \text { need a boundary condtion } \\
\text { closed strings }
\end{array}\right.
$$

put Dirichlet b.c. on open strings ... Dp-brane

Dp-branes in d-dimensions
now think of a N D3-brane system:

N D3 - brane system $\xrightarrow{\text { low energy limit }}\left\{\begin{array}{c}4 \mathrm{~d} . \mathcal{N}=4 \mathrm{SYM} \cdots \text { CFT } \\ \text { (strong coupling region) } \\ \text { string theory on AdS } \cdots \text { AdS } \\ \text { (classical solution) }\end{array}\right.$

AdS/CFT correspondence:

they are equivalent theories, since we are looking at a same system from different point of view
if it holds, for some observable, you can say:

$$
\begin{aligned}
(\text { quantum calculation in s.c.r. })= & (\text { classical calculation }) \\
\text { gauge theory side } & \text { string theory side }
\end{aligned}
$$

to check the correspondence, hang down a string from a probe D3-brane to this system and close the contour, then you will get a corresponding Wilson loop on both theory side.

${ }^{*}$ 1 gauge theory side

${ }^{*} 2$ string theory side
so $\langle W(C)\rangle$ is conjectured to be a minimal surface in string theory side:

*3 2 an image of ads mininimal surface
notes:
4d. SYM ... QCD
Wilson loop . . confinement
an investigation of Wilson loop in 4d. SYM in great detail is interesting and meaningful.
def. of Wilson loop is

$$
\begin{aligned}
\left.W\left(x^{\mu}, \theta_{i}\right)\right|_{C} & =\frac{1}{N} \operatorname{Tr} P \exp \left[\int_{C} d s\left(i A_{\mu} \dot{x}^{\mu}+|\dot{x}| \phi_{i} \theta^{i}\right)\right] \\
\mu & =1,2,3,4, \quad i=5,6,7,8,9,10
\end{aligned}
$$

think of supersymmetric(BPS) Wilson loop which satisfy BPS eq.:

$$
\delta W \sim(i \not x+|\dot{x}| \nsupseteq)\left(\varepsilon_{0}+\not x \varepsilon_{1}\right)=0
$$

some BPS solutions are known and for some of them, it is shown that 1 loop corrections cancel out exactly:

and believed that they do for all order. . . not yet confirmed
what I have studied:

1. relationship between BPS eq. and 1 loop Feynman diagram calculations by thinking of small perturbation around a known solution. i.e.

$$
\begin{gathered}
\left(i \Gamma^{\mu} \dot{x}^{\mu}+\Gamma^{i} \theta^{i}|\dot{x}|\right)\left(\varepsilon_{0}+\Gamma^{\mu} x^{\mu} \varepsilon_{1}\right)=0 \\
\diamond=\frac{g^{4} N^{2}}{2^{7} \pi^{4}} \int \varepsilon_{123} \frac{\theta_{1} \cdot \theta_{3}-\dot{x}_{1} \cdot \dot{x}_{3}}{x_{13}^{2}} \frac{x_{32} \cdot \dot{x}_{2}}{x_{32}^{2}} \log \left(\frac{x_{21}^{2}}{x_{31}^{2}}\right)=0
\end{gathered}
$$

under

$$
\left\{\begin{aligned}
x^{\mu} & \rightarrow x_{(0)}^{\mu}+\delta x_{(1)}^{\mu}+\cdots \\
\theta^{i} & \rightarrow \theta_{(0)}^{i}+\delta \theta_{(1)}^{i}+\cdots
\end{aligned}\right.
$$

tried to get x-dep. of θ for each order of δ in both side, but not yet finished.
2. get the general solutions for BPS eq.

$$
(i \not x+|\dot{x}| \nsupseteq)\left(\varepsilon_{0}+\not \nsim \varepsilon_{1}\right)=0 \Leftrightarrow\left(1+i \frac{\not \ddot{ }}{|\dot{x}|} \nsupseteq\right)\left(i \not x \not \varepsilon_{0}+|\dot{x}| \nsupseteq \not x \varepsilon_{1}\right)=0
$$

then BPS eq. is

$$
M v=0, \begin{cases}M & \equiv 1+i \frac{\not \ddot{x}}{\dot{x} \mid} \emptyset \\ v & \equiv i \not \nsim \varepsilon_{0}+|\dot{x}| \emptyset \not x \varepsilon_{1}\end{cases}
$$

constructing v with 0 -eigen vector v_{0} of $\mathrm{M} \rightarrow \theta=\theta\left(x^{\mu}(t)\right)$
2. has been solved by [Dymarsky, Pestun]

$$
\rightarrow\left\{\begin{array}{l}
\text { 1. check } \\
2 . \text { discuss about } \diamond=0
\end{array}\right.
$$

