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Introduction

Symmetry in disordered systems are often hidden.
Replica Symmetry Breaking(RSB) — mainly discussed in
mean-field spin glass model.

ex) Sherrington-Kirkpatrick model(fully connected spin-glass)

H = −
N∑

i<j

JijSiSj , Si = ±1, Jij ∼ N(0, 1/N)

The interaction causes

frustration

randomness
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The Replica Method

E [· · · ] — expectation w.r.t. the randomness.(Jij)

.

Identity(unfamiliar form)

.

.

.

. ..

.

.

E [log Z ] = lim
n→0

1

n
log E [Z n]

.

.

.

1 Calculate E [Z n] for n = 1, 2, 3, · · · .

E [Z n] = Tr1 · · ·TrnE [exp(−β
n∑

α=1

H(Sα))]

= Tr1 · · ·Trn exp(−Heff (S1, · · · ,Sn))

.

.

.

2 Continuate the result to n ∈ R

One can expect that all replicas of the system(Sα) are equivalent...
Replica symmetry(RS)
→ But it breaks in the low temperature!(instability)
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proposed symmetry breaking

Replica Symmetry Breaking(RSB) is introduced in a recursive
manner.
I := {1, 2, 3 · · · , n}: set of replica index

.

.
.

1 Divide the set I into n/m sets Ij with cardinality m.

.

.

.

2 Assume these two symmetries under permutation.

.

.

.

1 permute indeces inside Ij .

.

.

.

2 permute blocks Ij itself.

.

.

.

3 If this saddle point is still unstable, go back to 1 with setting
I = Ij and break them in the same way.

If we have to break the replicas into K hierarchy, the system is
called K-RSB system.
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conventional analysis

ex)mean field Potts glass model

H = −
∑
i<j

Jijδσi ,σj , σi = 1, 2, · · · , p, Jij ∼ N(0, 1/N)

temperature type of RSB

Tc1 < T RS holds

Tc2 < T < Tc1 RS is instablized ⇒ 1RSB

T < Tc2 1RSB is instablized ⇒ ∞-RSB

It seems that 1RSB is differnt from K -RSB(K ≥ 2)...
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type of RSB

Quite generally, systems often belong to one of the below three
systems.

RS — no hierarchies (or one-level hierarchy)

1RSB — two-level hierarchy

∞-RSB — infinite-level hierarchy

.

Question

.

.

.

. ..

.

.

Why do we rarely observe K-RSB (2 ≤ K < ∞)?
or

Is there any source of universality for 1RSB?
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reconsideration on the replica method

What we really do in the replica calculation is...

lim
N→∞

1

N
E [log Z ] = lim

n→0
lim

N→∞

1

Nn
log E [Zn]

1. Taking thermodynamic limit(saddle-point method).
2. Performing “analytic” continuation of n.

.

a general lesson from statistical mechanics

.

.

.

. ..

.

.

external field h → 0 limit after thermodynamic limit can cause a
lack of “analiticity”, or “symmetry breaking.”

⇒ Phase transition w.r.t. n may be significant for RSB!



. . . . . .

statistical mechanical setup

one-parameter/pseudo-temperature extention of the free energy

E [log Z ] = lim
n→0

1

n
log E [Z n] = lim

n→0

1

n
log E [exp(−βnF )]

E [· · · ] — Tr

F — Hamiltonian

1/(βn) — temperature

Canonical statistical mechanics!

RS ansatz is correct for n À 1 (i .e. at low temperature in 1/βn).
Q. How RS is broken when lowering n → 0 ?
⇒ Of course, one possibility is instability, but is there another?
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Thermodynamics of the replica number n

There is thermodynamic constraints to the continuation of n.
Def.

φ(n) := − 1

βn
log E [Z n]

1. Energy and entropy is monotone increasing function of the
temperature.
(monotonicity)

d
dn

φ(n) ≤ 0

2. Heat capacity is non-negative.
(convexity)

d2

dn2
(nφ(n)) ≤ 0

These hold for all models.
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Tc2
< T < Tc1

mean field Potts glass model

H = −
∑
i<j

Jijδσi ,σj , σi = 1, 2, · · · , p, Jij ∼ N(0, 1/N)

When decreasing n, mono-
tonicity is broken before insta-
bility occurs.
⇒ Monotonicity is relevant at
Tc2 < T < Tc1!
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T < Tc2

mean field Potts glass model

H = −
∑
i<j

Jijδσi ,σj , σi = 1, 2, · · · , p, Jij ∼ N(0, 1/N)

When decreasing n, instabil-
ity occurs before before mono-
tonicity is broken.
⇒ Instability is relevant at
T < Tc2!
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“phase diagram”
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Relevance of instability and monotonicity is switched at Tc2.
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useful proposition

.

proposition

.

.

.

. ..

.

.

If φ′(nm) = 0 for nm > 0, then φ(n) = φ(nm) for 0 < n < nm.

from the monotonicity,

｜
｜
｜
｜
｜
｜
｜
｜
｜

from the convexity,

Both are satisfied at the same time only when φ(n) = φ(0) for
0 < n < nm.
Rem. This proposition is valid for all models.
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1RSB solution is derived!

Using this theorem at Tc2 < T <
Tc1, we get

E [F ] = φ(nm) where φ′(nm) = 0.

Relation to 1RSB free energy

nm

→ 1RSB block size m

φ′(nm) = 0
→ saddle point equation of m

monotonicity condition
→ saddle-point condition
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Summary 1 — What did we do?

We perform the continuation w.r.t. n without conventional
RSB scheme, but get the same result as 1RSB.

The continuation is performed by a macroscopic condition,
which is related to the thermodynamics.

Thermodynamics of finite replica number is universal feature
for the replicated systems.

We can conclude that...
1RSB is actually universal because of the thermodynamics!
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Summary 2 — What can we do using this?

It is possible to construct 1RSB free energy if conventional RSB
theory does not work.
eg) spin-glass model on a random graph
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This framework shold be applied to the finite-dimensional cases....


