Dissipative Hydrodynamics

Akihiko Monnai

Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano

Quantum Fields at Finite Temperature "From Tera to Nano Kelvin" Discussion II with Professor Jean-Paul Blaizot

November 25th 2009, Komaba, The University of Tokyo

AM and T. Hirano, Phys. Rev. C 80, 054906 (2009) AM and T. Hirano, in preparation

Outline

1. Introduction

Relativistic hydrodynamics and heavy ion collisions

2. Distortion of Distribution

How to express δf by dissipative currents

3. Effects on Observables

Numerical results of δf on observables

4. Summary and Outlook

How to obtain dissipative currents

1. Introduction

Next: 2. Distortion of Distribution

Dissipative Hydrodynamics, Komaba, Nov. 25th 2009

Akihiko Monnai

Introduction

Relativistic hydrodynamics

Macroscopic description of a very hot, strongly-coupled system

- \Box
- Various applications are expected (heavy ion collisions, early universe, cold atomic gas, etc...)

What hydrodynamics does:

Introduction

Tensor decompositions – Projection to/against $u^{\mu}(x)$

$$T^{\mu\nu} = eu^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + 2W^{(\mu}u^{\nu)} + \pi^{\mu\nu}$$
$$N^{\mu}_B = n_B u^{\mu} + V^{\mu}$$

e : energy density Π : bulk pressure $\pi^{\mu\nu}$: shear stress tensor P_0 : hydrostatic pressure W^{μ} : energy current V^{μ} : charge current n_B : charge densityDissipative currents (= 0 in ideal hydro)

Multi-component system

(multi component theory) $\neq \sum$ (single component theory)

because of (i) difference of particle masses, (ii) pair creation/annihilation

Not considered seriously, but *important* for applications

> I discuss a multi-component theory in this talk

Relativistic Heavy Ion Collisions

RHIC experiment (2000-)

The quark-gluon plasma (QGP) created at heavy ion collisions $\sqrt{s_{NN}} = 200$ GeV

It obeys relativistic ideal hydrodynamic models well.

Strongly-coupled QGP (sQGP)

The success of ideal hydrodynamics suggests sQGP at RHIC

Relativistic Heavy Ion Collisions

LHC experiment (2010?-)

Coupling constant "runs" to become smaller as energy gets higher

Dissipative hydrodynamic models will become more important

Viscosity in QGP

Kharzeev & Tuchin ('08)

Bulk viscosity is usually neglected, BUT is not so small near T_c I put emphasis on bulk viscous effects in this talk

Relativistic Heavy Ion Collisions

- How does viscosity affects observables?
 - One needs a convertor of flow field into particles at freezeout

2. Distortion of Distribution

Previous: 1. Introduction

Next: 3. Effects on Observables

Dissipative Hydrodynamics, Komaba, Nov. 25th 2009

9

14 "bridges" from Relativistic Kinetic Theory

$$\begin{split} \Pi &= -\frac{1}{3} \Delta_{\mu\nu} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} p_{i}^{\nu} \delta f^{i} \qquad \pi^{\mu\nu} = \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\langle\mu} p_{i}^{\nu\rangle} \delta f^{i} \\ W^{\mu} &= \Delta^{\mu}_{\ \nu} u_{\rho} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\nu} p_{i}^{\rho} \delta f^{i} \qquad 0 = u_{\mu} \sum_{i} \int \frac{b_{i} g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} \delta f^{i} \\ V^{\mu} &= \Delta^{\mu}_{\ \nu} \sum_{i} \int \frac{b_{i} g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\nu} \delta f^{i} \qquad 0 = u_{\mu} u_{\nu} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} \delta f^{i} \end{split}$$

δf^i in Multi-Component System

Grad's 14-moment method \square 14 unknowns $\varepsilon^{\mu}, \varepsilon^{\mu
u}$

$$\delta f^i = -f_0^i (1 \pm f_0^i) [p_i^\mu \varepsilon_\mu + p_i^\mu p_i^\nu \varepsilon_{\mu\nu}]$$

No scalar, but non-zero trace tensor

 $\partial_{\mu}s^{\mu} = \varepsilon_{\mu\nu}\partial_{\alpha}I^{\mu\nu\alpha} \ge 0$: 2nd law of thermodynamics + $\partial_{\alpha}I^{\mu\alpha}_{\mu} \ne 0$ in multi-comp. system $\Longrightarrow \varepsilon^{\mu}_{\mu} \ne 0$

New tensor structure for The distortion is uniquely obtained: _____ multi-component system

$$\varepsilon_{\mu} = D_0 \Pi u_{\mu} + D_1 W_{\mu} + \tilde{D}_1 V_{\mu}$$

$$\varepsilon_{\mu\nu} = (B_0 \Delta_{\mu\nu} + \tilde{B}_0 u_{\mu} u_{\nu}) \Pi + 2B_1 u_{(\mu} W_{\nu)} + 2\tilde{B}_1 u_{(\mu} V_{\nu)} + B_2 \pi_{\mu\nu}$$

where D_i and B_i are calculated in kinetic theory.

3. Effects on Observables

Previous: 2. Distortion of Distribution

Next: 4. Summary and Outlook

Dissipative Hydrodynamics, Komaba, Nov. 25th 2009

Akihiko Monnai

Model Inputs

Bulk Viscosity and Particle Spectra

• Au+Au, $\sqrt{s_{NN}} = 200 (\text{GeV})$, b = 7.2(fm), p_T -spectra and $v_2(p_T)$ of π^-

Even "small" bulk viscosity may have significant effects on particle spectra

4. Summary and Outlook

Previous: 3. Effects on Observables

Next: Appendix

Dissipative Hydrodynamics, Komaba, Nov. 25th 2009

Akihiko Monnai

Summary and Outlook

- Determination of \(\delta f^i\) in a multi-component system
 - Viscous correction $\varepsilon_{\mu\nu}$ has non-zero trace.
 - Visible effects of δf_{bulk} on particle spectra
 - p_{T} -spectra is *suppressed*; $v_{2}(p_{T})$ is *enhanced*

- <u>Bulk viscosity can be important</u> in extracting information (e.g. transport coefficients) from experimental data.
- Full Viscous hydrodynamic models need to be developed to see more realistic behavior of the particle spectra.

Estimation of Dissipative Currents

Shear tensor $\pi^{\mu\nu}$ in conformal limit reduces to AdS/CFT result (*Baier et al. '08*)

Thank You

The numerical code will become available at

http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/distributions.html

Appendix

Previous: 4. Summary and Outlook

Dissipative Hydrodynamics, Komaba, Nov. 25th 2009

19

Shear Viscosity and Particle Spectra

• p_{T} -spectra and $v_{2}(p_{T})$ of π^{-} with shear viscous correction

Non-triviality of shear viscosity; both p_{T} -spectra and $v_{2}(p_{T})$ suppressed

Shear & Bulk Viscosity on Spectra

■ p_T -spectra and $v_2(p_T)$ of π^- with corrections from shear and bulk viscosity

Overall viscous correction suppresses $v_2(p_T)$; consistent with experiments

Quadratic Ansatz

• p_T -spectra and $v_2(p_T)$ of π^- when $\varepsilon_{\mu\nu} = C_1 \pi_{\mu\nu} + C_2 \Delta_{\mu\nu} \Pi$

Effects of the bulk viscosity is underestimated in the quadratic ansatz.

Bjorken Model

■ p_T -spectra and $v_2(p_T)$ of π^- in Bjorken model with cylindrical geometry: $R_0 = 10.0$ fm, $\tau = 7.5$ fm

$$u^{\tau} = 1, \ u^{r} = u^{\phi} = u^{\eta} = 0$$
$$d\sigma_{\tau} = \tau d\eta r dr d\phi, \ d\sigma_{r} = d\sigma_{\phi} = d\sigma_{\eta} = 0$$

Bulk viscosity suppresses p_{T} -spectra Shear viscosity enhances p_{T} -spectra

Blast wave model

