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Initial conditions for
high-energy nuclear collisions
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CERN and CEA/Saclay
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Outline

■ Parton model, factorization, saturation

■ Color Glass Condensate effective theory

■ Power counting and bookkeeping

■ Inclusive gluon spectrum at leading order

■ Loop corrections, factorization

◆ FG, Venugopalan, hep-ph/0601209, 0605246

◆ Fukushima, FG, McLerran, hep-ph/0610416

+ work in preparation with Lappi, Venugopalan
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Parton model
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Nucleon at rest

■ A nucleon at rest is a very complicated object...
■ Contains fluctuations at all space-time scales smaller than its

own size
■ Only the fluctuations that are longer lived than the external

probe participate in the interaction process
■ The only role of short lived fluctuations is to renormalize the

masses and couplings
■ Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Nucleon at high energy

■ Dilation of all internal time-scales for a high energy nucleon
■ Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe ⊲ the constituents behave as if they were free

■ Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)

■ Fast partons (fluctuations that were already visible before the
boost) do not have any significant dynamics over the
duration of the collision. They can be treated as static
objects, that act as sources for the slower partons
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Infrared and collinear divergences

■ Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{
x1 = M⊥ e+Y /

√
s

x2 = M⊥ e−Y /
√

s
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Infrared and collinear divergences

■ Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{
x1 = M⊥ e+Y /

√
s

x2 = M⊥ e−Y /
√

s

■ Radiation of an extra gluon :





(M⊥  , Y )

x1

x2

z,k⊥

=⇒ αs

∫

x1

dz

z

M⊥∫
d2~k⊥

k2
⊥
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Infrared and collinear divergences

■ Large logs : log(M⊥) or log(1/x1), under certain conditions

⊲ these logs can compensate the additional αs, and void the
naive application of perturbation theory
⊲ resummations are necessary

■ Logs of M⊥ =⇒ DGLAP + Collinear factorization
◆ M⊥ ≫ Λ

QCD

◆ x1, x2 are rather large

■ Logs of 1/x =⇒ BFKL + k⊥-factorization
◆ M⊥ remains moderate
◆ x1 or x2 (or both) are small

■ Physical interpretation :
◆ The physical process can resolve the gluon splitting if M⊥ ≫ k⊥

◆ If x1 ≪ 1, the gluon that initiates the process is likely to result
from bremsstrahlung from another parent gluon
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Factorization in the linear regime

■ Factorization in the linear small-x regime is known as
k

T
-factorization

■ It was introduced in the discussion of heavy quark production
near threshold, when s ≫ 4m2

q, to resum large logs of 1/x1,2

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)
Levin, Ryskin, Shabelski, Shuvaev (1991)

■ In this framework, cross-sections read :

dσ

dY d2 ~P ⊥

∝
Z

~k1⊥,~k2⊥

δ(~k1⊥+~k2⊥− ~P ⊥) ϕ1(x1, k1⊥) ϕ2(x2, k2⊥)
|M|2

k2
1⊥k2

2⊥

x1,2 =
M⊥√

s
e±Y

■ The small-x leading logs are resummed into the
non-integrated gluon distributions ϕ

1,2
by letting them evolve

according to the BFKL equation
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Parton saturation

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton saturation

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed
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Parton saturation

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton saturation

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x,Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼ αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG

A
(x,Q2

s)

πR2
A

∼ A1/3 1

x0.3
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

SPS
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Saturation domain
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Saturation domain

log(Q 2)
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

SPS

RHIC

LHC

LHC, high Pt
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Multiple scatterings

■ The saturation criterion can also be seen as a condition for
multiple scatterings

■ The mean free path of a gluon in a nucleus is

λ =
1

nσgg→g
, n ∼ xG

A
(x,Q2)

4
3πR3

A

■ Multiple scatterings are important if λ becomes smaller than
the size of the nucleus, λ . R

A
, i.e.

Q2 . αs
xG

A
(x,Q2)

πR2
A

∼ Q2
s
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number

■ Multiple scatterings :

⊲ 4-point function in the projectile ⊲ higher correlations
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Heavy Ion Collisions

■ 99% of the multiplicity below p⊥ ∼ 2 GeV
■ Q2

s might be as large as 10 GeV2 at the LHC (
√

s = 5.5 TeV)

⊲ saturation and multiple scatterings will be important
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Heavy Ion Collisions

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. viscous hydrodynamics

gluons & quarks in eq.
ideal hydrodynamics

hadrons in eq.

freeze out

■ calculate the initial production of semi-hard particles
■ provide initial conditions for hydrodynamics
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Color Glass Condensate
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Degrees of freedom

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t − z)/

√
2)

■ Slow partons (small x) cannot be considered static over the
time-scales of the collision process ⊲ they must be treated
as the usual gauge fields

Since they are radiated by the fast partons, they must be
coupled to the current Jµ

a by a term : AµJµ

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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Color Glass Condensate

■ Evolution equation (JIMWLK) :

∂W
Y

∂Y
= H W

Y

H =
1

2

Z

~y⊥

δ

δ eA+
b (ǫ, ~y⊥)

ηab(~x⊥, ~y⊥)
δ

δ eA+
a (ǫ, ~x⊥)

where −∂2
⊥
eA+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥)

■ ηab is a non-linear functional of ρ

■ This evolution equation resums the powers of αs ln(1/x) and
of Qs/p⊥ that arise in loop corrections

■ This equation simplifies into the BFKL equation when the
source ρ is small (one can expand ηab in ρ)
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CGC and Nucleus-Nucleus collisions

■ For symmetric collisions (e.g. nucleus-nucleus collisions),
the two projectiles should be treated on the same footing

■ For nucleus-nucleus collisions, there are two strong sources
that contribute to the color current :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

■ Average over the sources ρ1, ρ2

〈O
Y
〉
ρ1,ρ2

=

Z ˆ
Dρ1

˜ ˆ
Dρ2

˜
W

Ybeam−Y
[ρ1

˜
W

Y +Ybeam

ˆ
ρ2

˜
O[ρ1, ρ2

˜

■ How to compute O[ρ1, ρ2] in the saturation regime ?
■ Can this factorization formula be justified ?
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CGC and Nucleus-Nucleus collisions

?
L = −1

2
trFµνFµν + (Jµ

1 + Jµ
2

︸ ︷︷ ︸
)Aµ

Jµ

■ Given the sources ρ1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

■ Loop corrections and factorization?
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Initial particle production

■ Dilute regime : one parton in each projectile interact
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial

(+ pileup of many partonic scatterings in each AA collision)
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Goals

■ Physics goal : provide as detailed as possible initial
conditions for hydrodynamics. Ideally, one would like to have
a CGC-based event generator for nucleus-nucleus collisions

■ Factorization : can one resum the leading logs into objects
that represent the initial state of the incoming nuclei ? Are
these objects universal ?

■ The easiest quantities to compute are event-averaged
inclusive quantities. To have a true event generator, one
should also predict particle correlations in a given event, and
event by event fluctuations. Can we do this?
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Power counting and Bookkeeping
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Power counting
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Power counting

■ In the saturated regime, the sources are of order 1/g

(because
〈
ρρ

〉
∼ occupation number ∼ 1/αs)

■ The order of each connected diagram is given by :

1

g2
g# produced gluons g2(# loops)

■ The total order of a graph is the product of the orders of its
disconnected subdiagrams
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Vacuum diagrams

■ Vacuum diagrams do not produce any gluon. They are
contributions to the vacuum to vacuum amplitude

〈
0out

∣
∣0in

〉

■ The order of a connected vacuum diagram is given by :

g−2 g2(# loops)

■ Relation between connected and non connected vacuum
diagrams :

X„
all the vacuum

diagrams

«
= exp

X “ simply connected

vacuum diagrams

”ff
= eiV [j]
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Bookkeeping
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves



Parton model

Color Glass Condensate

Bookkeeping

● Power counting

● Vacuum diagrams

● Bookkeeping

Inclusive gluon spectrum

Factorization

Summary

CERN

François Gelis – 2008 Tokyo University, Komaba, February 2008 - p. 29

Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams
cut propagator : 2πθ(−p0)δ(p2)
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams
cut propagator : 2πθ(−p0)δ(p2)

■ The sum of the vacuum diagrams, exp(iV [j]), is the
generating functional for time-ordered products of fields :

˙
0out

˛̨
TA(x1) · · ·A(xn)

˛̨
0in

¸
=

δ

δj(x1)
· · · δ

δj(xn)
eiV [j]
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Bookkeeping

■ The probability of producing exactly n particles is :

Pn =
1

n!

Z
d3~p1

(2π)32E1
· · · d3~pn

(2π)32En

˛̨˙
~p1 · · ·~pnout

˛̨
0in

¸˛̨2

■ There is an operator C such that

◆ Pn is given by Pn =
1

n!
Cn eiV [j+] e−iV ∗[j−]

˛̨
˛
j+=j−=j

with

8
>>><
>>>:

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

δ

δj−(y)
→

y
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

δ

δj+(x)
→

y
x
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

¤y →
y

x
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

¤x →
y

x
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Bookkeeping

■ Reminder :

C ≡
Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

G0
+−(x, y) →

y

x

⊲ the operator C removes two sources (one in the amplitude and
one in the complex conjugated amplitude), and creates a new cut
propagator
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Bookkeeping

■ The sum of all the cut vacuum diagrams, with sources j+ on
one side of the cut and j− on the other side, can be written
as :

∑
(

all the cut

vacuum diagrams

)

= eC eiV [j+] e−iV ∗[j−]

■ If we set j+ = j− = j, then we should get
∑

n Pn = 1

(this property is a direct consequence of the “largest time
equation” in Cutkosky’s cutting rules)
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Bookkeeping

■ The operator C can be used to derive many useful formulas :

F (z) ≡
+∞∑

n=0

zn Pn = ezC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

⊲ sum of all cut vacuum graphs, where each cut is weighted by z

N = F ′(1) = C eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

N(N − 1) = F ′′(1) = C2 eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

■ Benefits :
◆ The tracking of infinite sets of Feynman diagrams has been

replaced by simple algebraic manipulations
◆ The use of the identity eC eiV [j+] e−iV ∗[j−]

˛̨
˛
j+=j−

= 1 renders

automatic an important cancellation that would be hard to see at
the level of diagrams (somewhat related to AGK)
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Inclusive gluon spectrum
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Diagrammatic expansion

■ It is easy to express the average multiplicity as :

N =
∑

n
n Pn = C

{

eC eiV [j+] e−iV ∗[j−]
︸ ︷︷ ︸

}

j+=j−=j

sum of all the cut vacuum diagrams : eiW [j+,j−]

■ There are two types of terms :
◆ C picks two sources in the same connected cut diagram

δ2iW

δj+(x)δj−(y)
→

◆ C picks two sources in two distinct connected cut diagrams

δiW

δj+(x)

δiW

δj−(y)
→
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Single gluon spectrum at LO

■ At LO, only tree diagrams contribute
⊲ the first type of topologies can be neglected

(they have at least one loop)

■ In each blob, we must sum over all the tree diagrams, and
over all the possible cuts :

N
LO

=
∑

trees

∑

cuts

tree

tree

■ Reminder : at the end, the sources on both sides of the cut
must be set equal :

j+ = j−
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Expression in terms of classical fields

■ The gluon spectrum at LO is given by :

dN
LO

dY d2~p⊥

=
1

16π3

Z

x,y

eip·(x−y)
¤x¤y

X

λ

ǫ(λ)
µ ǫ(λ)

ν Aµ
+(x)Aν

−(y)

■ Aµ
±(x) are sums of cut tree diagrams ending at the point x :

Aµ
+(x) =

∑

trees

∑

cuts

tree

x+

■ A± is a solution of the classical EOM ( ¤A± + U ′(A±) = j)
■ The boundary conditions are retarded : lim

x0→−∞
A±(x) = 0

■ Because they have the same initial condition and are driven
by the same source, A+ and A− are equal
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y

A

■ Note : the gluon spectrum can be seen as a functional of the
value of the classical field just above the backward
light-cone :

dN

d3~p
= F [A]
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Single gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

■ Important softening at small k⊥ compared to pQCD (saturation)
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Loop corrections, Factorization
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Factorization in four easy steps

■ I : Express the single gluon spectrum at LO and NLO in
terms of classical fields and small field fluctuations. Check
that their boundary conditions are retarded

■ II : Write the NLO terms as a perturbation of the initial value
of the classical fields on the light-cone :

dN

d3~p

˛̨
˛̨
NLO

=
h1
2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛̨
˛̨
LO

■ III : For ~u, ~v on the same branch of the light-cone, one has :

1

2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv+

Z

~u∈LC

β(~u)Tu = log
“Λ+

p+

”
×H + finite terms

■ IV : These are the only logs. Factorization follows trivially
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Single gluon spectrum at LO

■ LO results for the single gluon spectrum :

◆ Disconnected graphs cancel in the inclusive spectrum

◆ At LO, the single gluon spectrum can be expressed in
terms of classical solutions of the field equation of motion

◆ These classical fields obey retarded boundary conditions

dN

d3~p

∣
∣
∣
∣
LO

= lim
t→+∞

∫

d3~xd3~y ei~p·(~x−~y) · · · Aµ(t, ~x) Aν(t, ~y)

[
Dµ,Fµν

]
= Jν

lim
t→−∞

Aµ(t, ~x) = 0
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y

A

■ Note : the gluon spectrum is a functional of the value of the
classical field just above the backward light-cone :

dN

d3~p
= F [A]
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y

dN

d3~p

∣
∣
∣
∣
NLO

= lim
t→+∞

∫

d3~xd3~y ei~p·(~x−~y) · · ·
[

Gµν
−+(x, y)

+βµ(t, ~x) Aν(t, ~y) + Aµ(t, ~x) βν(t, ~y)
]

◆ Gµν
−+ is a 2-point function

◆ βµ is a small field fluctuation driven by a 1-loop source
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Single gluon spectrum at NLO

■ The equation of motion for βµ reads
ˆ
Dµ,

ˆ
Dµ, βν

˜˜
−
ˆ
Dµ,

ˆ
Dν , βµ

˜˜
+ ig

ˆ
Fµ

ν , βµ
˜

=

=
1

2

∂3L
Y M

(A)

∂Aν(x)∂Aρ(x)∂Aσ(x)| {z }
Gρσ

++(x, x)

3-gluon vertex in the background A

■ The 2-point functions Gµν
−+ and Gµν

++ can be written as

Gµν
−+(x, y) =

Z
d3~k

(2π)32Ek

ηµ
−k(x) ην

+k(y)

Gµν
++(x, x) =

1

2

Z
d3~k

(2π)32Ek

h
ηµ
−k(x) ην

+k(x) + ηµ
+k(x) ην

−k(x)
i

with

8
<
:

ˆ
Dµ,

ˆ
Dµ, ην

±k

˜˜
−
ˆ
Dµ,

ˆ
Dν , ηµ

±k

˜˜
+ ig

ˆ
Fµ

ν , ηµ
±k

˜
= 0

lim
t→−∞

ηµ
±k(t, ~x) = ǫµ(k) e±ik·x
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Single gluon spectrum at NLO

■ For a small field fluctuation aµ (not driven by a source)
propagating on top of the classical field Aµ, one can prove :

aµ(x) =
[ ∫

~u∈LC

a(u) ·Tu

]

Aµ(x)

◆ ’LC’ denotes a surface just above the backward light-cone
◆ Tu is the generator of shifts of the initial

value of the fields on this surface :

F [A + a] ≡ exp
h Z

~u∈LC

a(u) ·Tu

i
F [A]

Note : this construction is possible only because the objects
involved in the problem obey retarded boundary conditions

LC
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y

u

v

x y

u

v

■ They can be written as a perturbation of the LC initial fields :

dN

d3~p

˛̨
˛̨
NLO

=
h1
2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv

i dN

d3~p

˛̨
˛̨
LO

Σ(~u, ~v) ≡
Z

d3~k

(2π)32Ek

η−k(u) η+k(v)
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y

u

v

x y

u

v

x y

u

■ The loop correction can also be below the light-cone :

dN

d3~p

˛̨
˛̨
NLO

=
h1
2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛̨
˛̨
LO

⊲ the functions Σ(~u, ~v) and β(~u) can be evaluated analytically
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Divergences

■ If ~u, ~v belong to the same branch of the LC (e.g.
u− = v− = ǫ), the function Σ(~u, ~v) contains

Σ(~u, ~v) ∼
∫ +∞

0

dk+

k+
· · · eik−(u+−v+) with k− ≡ k2

⊥
2k+

⊲ the integral converges at k+ = 0 but not when k+ → +∞

Note : the log is a log(Λ+/p+), where Λ+ is the boundary
between the hard color sources and the fields, and p+ the
longitudinal momentum of the produced gluon

p+

p

ρ1Λ+

■ Similar considerations apply when ~u, ~v both belong to the
other branch of the LC, leading to a log(Λ−/p−)
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Leading Log approximation

■ In the LC gauge A+ = 0, the operator η(u) ·Tu is

η(u)·Tu ≡ (∂−ηi
a(u))

δ

δ(∂−Ai
a(u))

+η−
a (u)

δ

δA−
a (u)

+(∂µηµ
a (u))

δ

δ(∂µAµ
a(u))

■ An explicit calculation of ∂−ηi
±k and η−

±k shows that these
components have an extra 1/k+ when k+ → +∞

■ At leading log, it seems sufficient to consider :

η(u) ·Tu =
LLog

(∂µηµ
a (u))

δ

δ(∂µAµ
a(u))

This is almost correct, but not quite...
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Leading Log approximation

■ The space-time above the LC contains a classical
background field,

A± = 0 , Ai =
i

g
Ω†∂iΩ

⊲ the interaction of the fluctuation with a background field can turn
terms that are not divergent on the LC into divergent terms !
(factors of k+ can arise in the 3-gluon derivative coupling)

■ Because the background is a pure gauge, this problem is
circumvented by using Ωabηb instead of ηa as the initial condition :

η(u) ·Tu ≡ (∂−Ωabη
i
b(u))

δ

δ(∂−ΩabAi
b(u))

+ Ωabη
−
b (u)

δ

δΩabA−
b (u)

+(∂µΩabη
µ
b (u))

δ

δ(∂µΩabAµ
b (u))

⊲ at leading log, only the last term matters
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JIMWLK Hamiltonian

■ The coefficient of the leading log does not depend on u+, v+

■ Derivatives with respect to ∂µΩabAµ
b (u) can be mapped to

derivatives with respect to the slowest color sources :
Z

du+ δ

δ(∂µΩabAµ
b (u))

=

Z
d2~x⊥

˙
~u⊥

˛̨ 1

∂2
⊥

˛̨
~x⊥

¸ δ

δ eA+
a (ǫ, ~x⊥)

with −∂2
⊥
eA+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥)

■ When ~u, ~v are on the same branch of the LC, we have

1

2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv =
LLog

1

2
log

„
Λ+

p+

« Z

~x⊥,~y⊥

ηab(~x⊥, ~y⊥)
δ2

δ eA+
a (ǫ, ~x⊥)δ eA+

b (ǫ, ~y⊥)

with ηab(~x⊥, ~y⊥) ≡ 1

π

Z
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z)2(~y⊥ − ~z⊥)2

×
h
1 + Ω(x)Ω†(y) − Ω(x)Ω†(z) − Ω(z)Ω†(y)

i

ab
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JIMWLK Hamiltonian

■ In principle, one could evaluate the term involving β(~u) by
solving explicitly its EOM

■ Shortcut: by using the Green’s formula for this fluctuation,
one can show directly that

Z

~u∈LC

β(~u)Tu =
LLog

1

2
log

„
Λ+

p+

«Z

~x⊥

 Z

~y⊥

δηab(~x⊥, ~y⊥)

δ eA+
b (ǫ, ~y⊥)

!
δ

δ eA+
a (ǫ, ~x⊥)

■ Combining the real and virtual terms :
h1
2

Z

~u,~v∈LC

Σ(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i

=
LLog

log

„
Λ+

p+

«
1

2

Z

~y⊥

δ

δ eA+
b (ǫ, ~y⊥)

ηab(~x⊥, ~y⊥)
δ

δ eA+
a (ǫ, ~x⊥)

| {z }
JIMWLK H
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Leading Log divergences

■ The configuration where ~u, ~v are on the first branch of the
LC can be rewritten as

dN

d3~p

∣
∣
∣
∣
NLO

=
LLog

log

(
Λ+

p+

)

H1
dN

d3~p

∣
∣
∣
∣
LO

with H1 the JIMWLK Hamiltonian for the first nucleus

■ Including also the configuration where both ~u, ~v are on the
second branch of the LC, we get

dN

d3~p

∣
∣
∣
∣
NLO

=
LLog

[

log

(
Λ+

p+

)

H1 + log

(
Λ−

p−

)

H2

] dN

d3~p

∣
∣
∣
∣
LO
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Leading Log divergences

■ The only remaining possibility is to have ~u and ~v on different
branches of the LC

η µ
-k(u) η ν

+k(v)

LC

However, there is no log
divergence in this case, since
the k+ integral is of the form :
∫

dk+

k+
· · · eik+(u−−v−) eik−(u+−v+)

⊲ no mixing of the
divergences of the two nuclei
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Leading Log factorization

■ All the above discussion is for one given configuration of the
sources ρ1,2 (or of the fields eA±

1,2). Averaging over all the
configurations of the sources in the two projectiles, and using the
hermiticity of the JIMWLK Hamiltonian, we get
fi

dN

d3~p

fl

LO+NLO

=
LLog

Z ˆ
D eA+

1 D eA−
2

˜

×
“h

1 + log

„
Λ+

p+

«
H1 + log

„
Λ−

p−

«
H2

i
W [ eA+

1 ] W [ eA−
2 ]
” dN

d3~p

˛̨
˛̨
LO

■ This is a 1-loop result. Using RG arguments, this leads to the
following factorized formula for the resummation of the leading log
terms to all orders :

fi
dN

d3~p

fl
=

LLog

Z ˆ
D eA+

1 D eA−
2

˜
W

Y1
[ eA+

1 ] W
Y2

[ eA−
2 ]

dN

d3~p

˛̨
˛̨
LO

with
∂

∂Y
W

Y
= HW , Y1 = log(P+

1 /p+) , Y2 = log(P−
2 /p−)
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Initial conditions for hydro

■ Instead of the single gluon spectrum which is not of direct
interest in practical applications, one can reproduce all the
above discussion for the energy-momentum tensor :

〈T µν(τ, η, ~x⊥)〉 =
LLog

Z ˆ
D eA+

1 D eA−
2

˜
W

Y1
[ eA+

1 ] W
Y2

[ eA−
2 ]
h
T µν(τ, η, ~x⊥)

i

LO

with Y1 = Ybeam − η , Y2 = Ybeam + η

■ How to do it in practice :
◆ Construct initial conditions for W [ eA±], e.g. from the MV model

◆ Solve the JIMWLK equation (see Rummukainen, Weigert
(2003)) in order to get ensembles { eA+}

Y1
, { eA−}

Y2
of field

configurations at each rapidity

◆ At each rapidity η, chose randomly an element eA+
1 from the

ensemble {·}
Ybeam−η

and an element eA−
2 from {·}

Ybeam+η

◆ Compute T µν(τ, η, ~x⊥) for this pair ( eA+
1 , eA−

2 )

◆ Repeat until the Monte-Carlo integral converges
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Initial conditions for hydro

■ The previous procedure will only reproduce the energy
momentum tensor profile for the average event. Ideally, one
would like to be able to generate “events”, i.e. a collection of
energy-momentum profiles, each of them representing the
outcome of one collision

■ In order to generate events with the correct initial 2-point
correlations, one would need to compute

〈
Tµν(x)T ρσ(y)

〉
−

〈
Tµν(x)

〉〈
T ρσ(y)

〉

■ Origin of the fluctuations :

◆ Distribution of the nucleons inside the nucleus

◆ Distribution of the color charges inside each nucleon

◆ The previous two being fixed, there is a fluctuation of the
distribution of produced particles in the collision. Power counting
arguments show that this correlation is as large as the mean
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Summary

■ The single gluon spectrum at LO involves only retarded
classical fields

■ Factorization works (as expected) for the single inclusive
gluon spectrum

■ With a complete knowledge of the 1- and 2-gluon initial
spectra, one could in principle build a CGC-based event
generator for AA collisions, that has the correct correlations
up to 2 particles (but not beyond that)

■ Interesting issues :

◆ 2-gluon spectrum and factorization thereof
◆ Role of the instability of the classical field in

thermalization?
◆ Factorization at Next-to-Leading Log?
◆ What about exclusive quantities, like diffraction and

rapidity gaps?
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Extra bits
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Generating functional

■ Consider a function z(~p), and define the functional

F [z] ≡ 1

n!

+∞∑

n=0

∫

dΦ1 · dΦn z(~p1) · · · z(~pn)
∣
∣
〈
~p1 · · ·~pnout

∣
∣0in

〉∣
∣
2

■ Any physical quantity can be obtained from F [z]

◆ Single inclusive spectrum :

dN

d3~p
=

δF [z]

δz(~p)

˛̨
˛̨
z=1

◆ Double inclusive spectrum (correlated part) :

C(~p1, ~p2) =
δ2F [z]

δz(~p1)δz(~p2)
− δF [z]

δz(~p1)

δF [z]

δz(~p2)

˛̨
˛̨
z=1
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From F[z] to an event generator

■ Discretize the phase-space by dividing it in bins 1 to N . The
functional F [z(~p)] becomes a function of N variables F (z)
with z ≡ (z1 · · · zN

)

■ It can be parameterized by lnF (z) =
∑

r
b(r)(zr − 1),

where the sum is over vectors r with integer components ≥ 1

■ If n ≡ (n1 · · ·nN
), the probability P (n) to have n1 particles in

bin 1, etc... can be calculated in terms of the b(r)
(complicated but explicit formulas) ⊲ generate events
according to this probability law

■ Note : moments of the distribution are related to the b(r) by
˙
ni

¸
=
X

r

ri b(r)

˙
ninj

¸
−
˙
ni

¸˙
nj

¸
=
X

r

rirj b(r)

⊲ one could truncate the series of the b(r) to have a generator that
reproduces all the correlations up to a certain order
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From F[z] to an event generator

■ Example : the simplest truncation is to assume that the ni’s
are independent Poissonian variables :

˙
ninj

¸
−
˙
ni

¸˙
nj

¸
= 0 for i 6= j

˙
n

2
i

¸
−
˙
ni

¸2
=
˙
ni

¸2

■ This is realized if

b(r) = 0 if at least one component of r is ≥ 1

b(r) = 0 if at least two components of r are 6= 0

⊲ in this approximation, the only nonzero b(r)’s are the
b(0 · · · 1 · · · 0). They can be determined from the inclusive
1-gluon spectrum

■ If in addition, one knew the inclusive 2-gluon spectrum, one
could make a less drastic truncation, that would provide a
generator that reproduces all the 2-particle correlations
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F[z] at Leading Order

■ Could one evaluate directly F [z(~p)]?
■ At leading order, this is given by the same topologies of

diagrams as those involved in N :

1

F [z]

δF [z]

δz(~p)
=

∑

trees

∑

cuts

tree

tree

p

but the internal cut propagators are multiplied by z(~p)

■ One can also write it in terms of two fields A±(x) as :

1

F [z]

δF [z]

δz(~p)
=

Z

x,y

eip·(x−y) · · · Aµ
+(x)Aν

−(y)

Note : this formula is formally identical to the formula for the
inclusive spectrum, but the fields A± it contains are different
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1-gluon spectrum boundary conditions

■ For later comparison, it is useful to rewrite the boundary
conditions for the single inclusive gluon spectrum in terms of
the Fourier modes of the fields :

Aǫ(x) ≡
Z

d3~p

(2π)32Ep

h
a(+)

ǫ (x0, ~p) e−ip·x + a(−)
ǫ (x0, ~p) e+ip·x

i

■ The retarded boundary conditions are equivalent to :

a
(+)
+ (−∞, ~p) = a

(−)
− (−∞, ~p) = 0

a
(+)
− (+∞, ~p) = a

(+)
+ (+∞, ~p)

a
(−)
+ (+∞, ~p) = a

(−)
− (+∞, ~p)
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F[z] at Leading Order

■ A± are still solutions of the classical EOMs

■ The boundary conditions can be rewritten in terms of the
Fourier coefficients as :

a
(+)
+ (−∞, ~p) = a

(−)
− (−∞, ~p) = 0

a
(+)
− (+∞, ~p) = z(~p) a

(+)
+ (+∞, ~p)

a
(−)
+ (+∞, ~p) = z(~p) a

(−)
− (+∞, ~p)

■ The function z(~p) enters only via the boundary conditions

■ The only difference at leading order between inclusive
quantities and more exclusive ones comes from the
boundary conditions

■ These boundary conditions are not retarded
⊲ extremely difficult to solve numerically
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Inclusive quark spectrum

FG, Kajantie, Lappi (2004, 2005)

■ One can construct for quarks an operator Cq that plays the
same role as C for the gluons

■ By repeating the same arguments, we find two generic
topologies contributing to the inclusive quark spectrum :

(the blobs are sums of cut diagrams)

■ The first topology cannot exist because the quark line is not
closed on itself

⊲ the quark spectrum starts at one loop



Parton model

Color Glass Condensate

Bookkeeping

Inclusive gluon spectrum

Factorization

Summary

Extra bits

● Generating functional

● Inclusive quark spectrum

● Longitudinal expansion

● AGK identities

● Exclusive processes

● Action of Tu

CERN

François Gelis – 2008 Tokyo University, Komaba, February 2008 - p. 68

Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -

■ Perform a resummation of all the sub-diagrams that
correspond to the retarded classical solution :

∑
trees
cuts

= ∑
trees

=
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Quark propagator

■ The summation of all the classical field insertions can be
done by solving a Lippmann-Schwinger equation :

Sǫǫ′(x, y) = S0
ǫǫ′(x, y)−ig

X

η=±

(−1)η

Z
d4z S0

ǫη(x, z)Aµ(z)γµSηǫ′(z, y)

■ This equation is rather non-trivial to solve in this form,
because of the mixing of the 4 components of the
propagator. Perform a rotation on the ± indices :

Sǫǫ′ → Sαβ ≡
X

ǫ,ǫ′=±

UαǫUβǫ′Sǫǫ′

(−1)ǫδǫǫ′ → Σαβ ≡
X

ǫ=±

UαǫUβǫ(−1)ǫ

■ A useful choice for the rotation matrix U is U = 1√
2

(

1 −1

1 1

)
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Quark propagator

■ Under this rotation, the matrix propagator and field insertion
become :

Sαβ =

0
@ 0 S

A

S
R

S
D

1
A , Σαβ =

0
@0 1

1 0

1
A

where S0
D

(p) = 2π(/p + m)δ(p2 − m2)

■ The main simplification comes from the fact that S0
Σ is the

sum of a diagonal matrix and a nilpotent matrix

■ One finds that S
R

and S
A

do not mix, i.e. they obey
equations such as :

S
R

(x, y) = S0
R

(x, y) − i g

Z
d4z S0

R
(x, z)Aµ(z)γµS

R
(z, y)

■ One can solve S
D

in terms of S
R

and S
A

:

S
D

= S
R
∗ S0

R

−1 ∗ S0
D
∗ S0

A

−1 ∗ S
A
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Quark propagator

■ In order to go back to S+−, invert the rotation :

S+− =
1

2
[S

A
− S

R
− S

D
]

■ At this point, we can rewrite the quark spectrum in terms of
retarded and advanced quark propagators in the classical
background

■ Finally, one can rewrite it in terms of retarded solutions of the
Dirac equation on top of the background Aµ(x)

dNq

dY d2~p⊥

=
1

16π3

Z
d3~q

(2π)32Eq

˛̨
˛M(~p, ~q)

˛̨
˛
2

with

M(~p, ~q) = lim
x0→+∞

Z
d3~x eip·x u†(~p)ψ

q
(x)

(i/∂x−g /A(x)−m)ψ
q
(x) = 0 , ψ

q
(x0, ~x) =

x0→−∞
v(~q)eiq·x
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Quark propagator

■ This calculation amounts to summing the following
diagrams :
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Background field

■ Space-time structure of the classical color field:

z

t

0

21

3
◆ Region 0: Aµ = 0

◆ Region 1: A± = 0,
Ai = i

g
U1∇i

⊥U†
1

◆ Region 2: A± = 0,
Ai = i

g
U2∇i

⊥U†
2

◆ Region 3: Aµ 6= 0

■ Notes:
◆ In the region 3, Aµ is known only numerically
◆ We must solve the Dirac equation numerically as well
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Quark propagation

■ Propagation through region 0:

z

t

⊲ trivial because there is no background field

ψ
q
(x) = v(~q)eiq·x
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Quark propagation

■ Propagation through region 1:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,1

(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 2:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,2

(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 3:

z

t τ iτ f

⊲ One must solve the Dirac equation :
ˆ
i/∂ − g /A− m

˜
ψq(τ, η, ~x⊥) = 0

⊲ initial condition: ψ
q
(τi) = ψ

q,1(τi) + ψ
q,2(τi)

(τi = 0+ in practice)
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Time dependence

■ g2µ = 2 GeV , (*) g2µ = 1 GeV :

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *
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Spectra for various quark masses

■ g2µ = 2 GeV , τ = 0.25 fm :

0 1 2 3 4
q̂ [GeV]

0
5×

10
4

1×
10

5
2×

10
5

dN
/d

yd
2 q T

 [
ar

bi
tr

ar
y 

un
its

]

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 3 GeV
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity
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Longitudinal expansion

■ For a system finite in the η direction, the gluons will have a
longitudinal velocity tied to their space-time rapidity

⊲ at late times : if particles fly freely, only one longitudinal
velocity can exist at a given η : vz = tanh (η)

⊲ the expansion of the system is the main obstacle to local
isotropy
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Generating function

■ Let Pn be the probability of producing n particles

■ Define the generating function :

F (z) ≡
∞X

n=0

Pn zn

■ From unitarity, F (1) =
∑∞

n=0 Pn = 1. Thus, we can write

ln(F (z)) ≡
∞X

r=1

br (zr − 1)

■ At the moment, we need to know only very little about the br :
◆ F (z) is a sum of diagrams that may or may not be connected
◆ ln(F (z)) involves only connected diagrams. Hence, the br ’s are

given by certain sums of connected diagrams
◆ Every diagram in br produces r particles
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Generating function

■ Example : typical term in the coefficient of z11, with
contributions from b5 and b6 :
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Distribution of connected subdiagrams

■ From this form of the generating function, one gets :

Pn =

nX

p=0

e−
P

r br
1

p!

X

α1+···+αp=n

bα1 · · · bαn

| {z }
probability of producing n particles in p cut subdiagrams

■ Summing on n, we get the probability of p cut subdiagrams :

Rp =
1

p!

"
∞X

r=1

br

#p

e−
P

r br

Note : Poisson distribution of average
˙
Nsubdiagrams

¸
=
P

r br

■ By expanding the exponential, we get the probability of
having p cut subdiagrams out of a total of m :

Rp,m =
(−1)m−p

(m − p)! p!

"
∞X

r=1

br

#m
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AGK identities

■ The quantities Rp,m obey the following relations :

∀m ≥ 2 ,

mX

p=1

p Rp,m = 0 ,

∀m ≥ 3 ,

mX

p=1

p(p − 1) Rp,m = 0 , · · ·

■ Interpretation : contributions with more than 1 subdiagram
cancel in the average number of cut subdiagrams, etc...

■ Correspondence with the original relations by
Abramovsky-Gribov-Kancheli :
◆ The original derivation is formulated in the framework of reggeon

effective theories
◆ Dictionary: reggeon −→ subdiagram

◆ These identities are more general than “reggeons”, and are valid
for any kind of subdiagrams
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Limitations

■ The AGK relations, obtained by “integrating out” the number
of produced particles, describe the combinatorics of
connected diagrams

⊲ by doing that, a lot of information has been discarded

■ For instance, to compute the average number of produced
particles, one would write :

˙
n
¸

=
D
Nsubdiagrams

E

| {z }
×
D
# of particles per diagram

E

| {z }
X

r

br requires a more detailed description
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Exclusive processes

■ So far, we have considered only inclusive quantities – i.e. the
Pn are defined as probabilities of producing particles
anywhere in phase-space

■ What about events where a part of the phase-space remains
unoccupied ? e.g. rapidity gaps

Y
empty region
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Main issues

1. How do we calculate the probabilities P excl
n with an excluded

region in the phase-space ?
Can one calculate the total gap probability Pgap =

∑

n P excl
n ?

2. What is the appropriate distribution of sources W excl
Y

[ρ] to
describe a projectile that has not broken up ?

3. How does it evolve with rapidity ?

See : Hentschinski, Weigert, Schafer (2005)

4. Are there some factorization results, and for which quantities
do they hold ?
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Exclusive probabilities

■ The probabilities P excl
n [Ω], for producing n particles – only in

the region Ω – can also be constructed from the vacuum
diagrams, as follows :

P excl
n [Ω] =

1

n!
Cn

Ω
eiV e−iV ∗

where C
Ω

is an operator that removes two sources and links
the corresponding points by a cut (on-shell) line, for which
the integration is performed only in the region Ω

■ One can define a generating function,

F
Ω
(z) ≡

∑

n

P excl
n [Ω] zn ,

whose derivative is given by the same diagram topologies as
the derivative of the generating function for inclusive
probabilities
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Exclusive probabilities

■ The generating function F
Ω
(z) is a particular case of the

functional F [z(~p)] introduced earlier :

F
Ω
(z) = F [z(~p)] with

{
z(~p) = z if ~p ∈ Ω

z(~p) = 0 if ~p 6∈ Ω

■ At leading order, the dependence on the region Ω only
affects the boundary conditions for the classical fields in
terms of which one can write F ′

Ω
(z)/F

Ω
(z)

■ The integration constant needed to go from F ′
Ω
(z)/F

Ω
(z) to

F
Ω
(z) is non-trivial :

⊲ F
Ω
(1) – the sum of all the exclusive probabilities – is the

probability of not having particles in the complement of Ω,
i.e. the gap probability
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Survival probability

■ We can write :

F
Ω
(z) = F

Ω
(1) exp







z∫

1

dτ
F ′

Ω
(τ)

F
Ω
(τ)







⊲ the prefactor F
Ω
(1) will appear in all the exclusive

probabilities

■ This prefactor is nothing but the famous “survival probability”
for a rapidity gap

⊲ One can in principle calculate it by the general techniques
developed for calculating inclusive probabilities :

F
Ω
(1) = F incl

1−Ω
(0)

⊲ Note : it is incorrect to say that a certain process with a
gap can be calculated by multiplying the probability of this
process without the gap by the survival probability
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Factorization ?

■ In order to discuss factorization for exclusive quantities, one
must calculate their 1-loop corrections, and study the
structure of the divergences... Not done yet.

■ Except for the case of Deep Inelastic Scattering, nothing is
known regarding factorization for exclusive processes in a
high density environment

■ For the overall framework to be consistent, one should have
factorization between the gap probability, F

Ω
(1), and the

source density studied in Hentschinski, Weigert, Schafer
(2005) (and the ordinary W

Y
[ρ] on the other side)

■ The total gap probability is the “most inclusive” among the
exclusive quantities one may think of. For what quantities
– if any – does factorization work ?
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Action of Tu

■ One can prove the following formula for the evolution of a
small perturbation a(x) on top of the classical field :

a(x) =

Z

~u∈LC

h
ain(~u) · T ~u

i
A(x)

⊲ from the classical field A(x), the operator ain(~u) · T ~u builds the
fluctuation a(x) whose initial condition on the light-cone is ain(~u)

■ From this formula, one sees that T ~uA(x) determines how
the fluctuation a(x) is sensitive on its initial condition

■ If there is an instability in the system, two fluctuations whose
value on the light-cone differ by an amount ∼ ǫ will differ by
an amount ∼ ǫ exp(#

√
τ) at the time τ

⊲ T ~uA(τ, ~y) ∼
τ→+∞

e
√

µτ
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Action of Tu

■ Green’s formula for the retarded classical field A(x) above
the light-cone :

A(x) =
g

2

∫

LC+

d4z G0
R
(x, z) A2(z)

+

∫

LC

d3~u G0
R
(x, u)

[

n·
→
∂ u −n·

←
∂ u

]

Ain(~u)

A(x) =

x

Ain or ∂τAin
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Action of Tu

■ Acting on A(x) with the operator ain · T ~u replaces the initial
Ain or ∂τAin at point ~u by ain or ∂τain respectively :

[

ain · T ~u

]

A(x) =

x

u

ain or ∂τain

■ The line displayed in green can be seen as the retarded
propagator of a fluctuation on top of the classical field
between the point ~u on the light-cone and the final point x
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