Komaba 09/12/2

QCD thermodynamics with improved Wilson quarks at zero and finite densities

K. Kanaya for the WHOT-QCD Collaboration*

kanaya@ccs.tsukuba.ac.jp

*) WHOT-QCD Collab.: S. Aoki, S. Ejiri, T. Hatsuda, N. Ishii, Y. Maezawa, H. Ohno, H. Saito, T. Umeda and KK

MOTIVATION QCD thermodynamics on the lattice

phase structure and T_c nature of the transition/crossover EOS, v_s , η ,

> properties of quark matter at heavy ion collisions> development of early universe / genesis of matter

Numerical simulations of QCD on the lattice

* the only systematic / ab initio way to investigate the issue

* becoming quantitatively powerful

$\begin{array}{l} \text{MOTIVATION} \\ \text{status of lattice studies} \\ T = 0 \quad N_F = 2 + 1 \text{ (degenerate ud + s) simulation} \\ \text{directly at the physical point} \text{ (PACS-CS Collab.)} \\ \end{array}$

-0 10

π Κ η_{ss}

0.5

octet barvon

FIG. 24 (color online). Light hadron spectrum extrapolated to

the physical point using m_{π} , m_{K} and m_{Ω} as input. Horizontal

bars denote the experimental values

decuplet baryon

32³x64, *a*=0.09fm

planned: u-d mass difference and QED effects yet to do: continuum extrapolation

original
 target

 $K^* \phi \ N \ \Lambda \ \Sigma \ \Xi \ \Delta \ \Sigma^* \ \Xi^* \Omega$

 $T > 0, \ \mu \neq 0$ $N_F = 2+1$ at almost physical point e.g. EOS with improved Staggered quarks: RBC-Bi/MILC ('07-'09) $N_f = 2+1, \ N_t = 4, 6, 8, \ m_{\pi} \sim 220, 150 \text{MeV}$ Budapest-Wuppertal ('06) $N_f = 2+1, \ N_t = 4, 6, \ m_{\pi} \sim 140 \text{MeV}$

MOTIVATION lattice quarks

$T > 0, \mu \neq 0$

Most studies done with **staggered-type quarks** because of less computational costs / a part of chiral sym. preserved / ... N_f=2+1: T>0 at (almost) physical point, µ≠0 studies but

4 flavors degenerate (''taste'')

<= "4th root trick": replace detD by its 4th root by hand

=> non-local theory

=> universality to our world not guaranteed

Need crosschecks with theoretically sound lattice quarks. * Wilson quarks much behind: no $N_f=2+1$, no $\mu \neq 0$, m_q not quite light ... * lattice chiral quarks (DW, overlap, ...): yet in its infancy / too expensive

We want to extend **Wilson** studies (thus "WHOT"-QCD) to $N_f=2+1$, $\mu \neq 0$, and smaller m_q

Wilson simulations are more expensive => improvements/tricks are called for.

contents

 Motivation: Why Wilson-type quarks?
 Improved Wilson quarks at µ=0 with an introduction to T>0 QCD on the lattice.
 Improved Wilson quarks at µ>0
 Fixed scale approach with T-integral method
 Summaries and outlooks

Wilson quarks at $\mu=0$

PRD 63, 034502 (2001); PRD 64, 074510 (2001); PRD 75, 074501 (2007)

INTRODUCTION

Conventionally, *a* is varied at a fixed N_t ("fixed Nt approach"), where *a* is controlled by the lattice gauge coupling $\beta = \frac{1}{6q^2}$.

THERMODYNAMICS WITH WILSON QUARKS $N_f = 2 \text{ QCD}, Nt=4, (6)$

PRD 63, 034502 (2001); PRD 64, 074510 (2001); PRD 75, 074501 (2007)

$$S = S_{g} + S_{q},$$

$$S_{g} = -\beta \sum_{x} \left(c_{0} \sum_{\mu < \nu; \mu, \nu = 1}^{4} W_{\mu\nu}^{1 \times 1}(x) + c_{1} \sum_{\mu \neq \nu; \mu, \nu = 1}^{4} W_{\mu\nu}^{1 \times 2}(x) \right)$$

$$S_{q} = \sum_{f=1,2} \sum_{x,y} \bar{q}_{x}^{f} D_{x,y} q_{y}^{f},$$

$$D_{x,y} = \delta_{xy} - K \sum_{\mu} \{ (1 - \gamma_{\mu}) U_{x,\mu} \delta_{x+\hat{\mu},y} + (1 + \gamma_{\mu}) U_{x,\mu}^{\dagger} \delta_{x,y+\hat{\mu}} \} - \delta_{xy} c_{SW} K \sum_{\mu < \nu} \sigma_{\mu\nu} F_{\mu\nu}$$

$$c_{1} = -0.331, c_{0} = 1 - 8c_{1}$$

$$c_{SW} = (W^{1 \times 1})^{-3/4} = (1 - 0.8412\beta^{-1})^{-3/4}$$
RG-improved Iwasaki glue
MF-improved clover quarks

T>0 simulations: Nt=4, (6), $V = \text{mainly } 16^3$, $m_{\pi} > \approx 500 \text{ MeV}$ T=0: simulations: 16^4 , $12^3 \times 24$

PHASE STRUCTURE

PHASE STRUCTURE

O(4) SCALING

massless N_f -flavor QCD (continuum): * $SU(N_f)_L \times SU(N_f)_R \times U(1)_V \times U(1)_A$ SSB ↓ ↑ high T anomaly $SU(N_f) \vee \times U(1) \vee$ effective 3d σ model (GL model) Pisarski-Wilczek ('84) $N_f \geq 3$: Ist order $N_f = 2$: if anomaly negligible -> 1 st order with anomaly -> 2nd order <=> O(4) Heisenberg model O(4) scaling [crit. exponents, scaling functions, ...] (Note: RG flow enhances the anomaly towards the IR limit.) $M/h^{1/\delta} = f(t/h^{1/\beta\delta})$ reduced temperature $(T-T_c)/T_c$ $1/\beta \delta = 0.537(7)$ universal scaling function $1/\delta = 0.2061(9)$ external magnetic field magnetization

O(4) SCALING

Fit QCD data with O(4) scaling function f(x) and O(4) critical exponents. $M/h^{1/\delta} = f(t/h^{1/\beta\delta})$ $t \sim \beta - \beta_{ct}, h \sim m_q a, \text{ and } M \sim \langle \overline{\psi}\psi \rangle$ $\langle \overline{\psi}\psi \rangle_{sub} = 2m_q a Z \sum_x \langle \pi(x)\pi(0) \rangle$ to subtract out contributions from explicit chiral violation due to the Wilson term.

=> can be used to precisely extract T_c in the chiral limit. Current estimate: $T_c = 171-180$ (Nt=4), 160-184 MeV (Nt=6) [WHOT-QCD, arXiv:0909.2121]

(cf.) Recent study with staggered quarks: Ejiri et al. arXiv: 0909.5122

EOS

$$\begin{split} & \epsilon = -\frac{1}{V} \frac{\partial \ln Z}{\partial T^{-1}}, \quad p = T \frac{\partial \ln Z}{\partial V} \end{split}$$
Trace anomaly:

$$\begin{aligned} & \frac{\epsilon - 3p}{T^4} = N_t^4 \left\{ \left\langle a \frac{dS}{da} \right\rangle - \left\langle a \frac{dS}{da} \right\rangle_{T=0} \right\} = \frac{N_t^3}{N_s^3} \sum_i a \frac{db_i}{da} \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\} \end{aligned}$$

$$b = (\beta, \kappa_{ud}, \kappa_s, \cdots) \equiv (b_1, b_2, \cdots) \qquad \text{measured by the simulation.} \\ T=0 \text{ subtracted for renormalization.} \end{aligned}$$
Itattice beta functions
scale-dep. of coupl. parameters along LCP

EOS

Beta functions not available for this combination of lattice actions yet.

=> We have to calculate by ourselves.

Inverse matrix method

[PRD 64, 074510]

- i. Collect T=0 lattice results of #param. observables (e.g. $m_{\pi a}$, $m_{\rho a}$, ...).
- ii. Fit them as functions of coupling parameters
- iii. Determine LCP's
- iv. Invert the coupling param. dependence of observables to the observable dependence of coupling parameters along a LCP.

EOS

Integral method:

Differentiate and integrate the thermodyn. relation $p = (T/V) \ln Z$

$$p = \frac{T}{V} \int_{b_0}^{b} db \frac{1}{Z} \frac{\partial Z}{\partial b} = -\frac{T}{V} \int_{b_0}^{b} \sum_{i} db_i \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\}$$
such that $p(b_0) \approx 0$
numerical integration
in the coupling param. space

The integration path is free to choose as far as $p(b_0) \approx 0$

Wilson quarks at µ≠0

FORMULATION $\mu \neq 0$ QCD on the lattice $U_4 \Longrightarrow U_4 e^{ia\mu_q}$ (positive direction); $U_4 e^{-ia\mu_q}$ (negative direction) $Z = \operatorname{Tr} e^{-H/T} = \int Dq D\bar{q} DU e^{-S}; \quad S = S_g + \sum \bar{q} M[U] q$ $M(\mu)^{\dagger} = \gamma_5 M(-\mu) \gamma_5$ $[\det M(\mu)]^* = \det M(-\mu) \neq \det M(\mu)$ complex Boltzmann weight $\int Dq D\bar{q}e^{-\sum \bar{q}M[U] q} = \det M(\mu)$ => sign problem (complex phase problem) Large cancellations due to phase fluctuations: $\langle e^{i\theta} \rangle \propto e^{-V}$ Exponentially large statistics needed to keep the accuracy.

STATUS

Approaches to study at small μ :

- Reweighting from $\mu=0$
- Taylor expansion from $\mu=0$
- ► Analytic continuation from imag. µ
- Canonical ensemble

```
Fodor-Katz ('02-), ...
```

Swansea, Bielefeld, BNL ('02-), ...

deForcrand-Philipsen ('02-), ...

BNL-Bielefeld ('07-), ...

Taylor expansion method with improved Staggered quarks: Bielefeld-Swansea ('02-05) Nf=2, Nt=4, heavy MILC, RBC-Bielefeld ('08-) Nf=2+1, Nt=4,6, mπ≈220MeV

No Wilson until ~'07.

STUDY WITH WILSON QUARKS AT $\mu \neq 0$ $N_f = 2 \text{ QCD}, Nt = 4$ (based on the $\mu = 0$ study) [arXiv:0909.2121]

Observables

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z} \equiv \omega, \qquad \frac{n_f}{T^3} = \frac{1}{VT^3} \frac{\partial \ln \mathcal{Z}}{\partial (\mu_f/T)} = \frac{\partial (p/T^4)}{\partial (\mu_f/T)}, \qquad (f = u, d)$$
$$\frac{\chi_q}{T^2} = \left(\frac{\partial}{\partial (\mu_u/T)} + \frac{\partial}{\partial (\mu_d/T)}\right) \frac{n_u + n_d}{T^3} \qquad \frac{\chi_I}{T^2} = \left(\frac{\partial}{\partial (\mu_u/T)} - \frac{\partial}{\partial (\mu_d/T)}\right) \frac{n_u - n_d}{T^3}$$

Taylor expansion in
$$\mu_u \equiv \mu_d (\equiv \mu_q)$$
 at $\mu_u \equiv \mu_d \equiv 0$
$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n, \qquad c_n(T) = \frac{1}{n!} \frac{N_t^3}{N_s^3} \left. \frac{\partial^n \ln \mathcal{Z}}{\partial (\mu_q/T)^n} \right|_{\mu_q = 0}$$

$$\frac{\chi_q(T,\mu_q)}{T^2} = 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + \cdots \qquad c_2 = \frac{N_t}{2N_s^3} \mathcal{A}_2, \quad c_4 = \frac{1}{4!N_s^3N_t} (\mathcal{A}_4 - 3\mathcal{A}_2^2)$$
$$\mathcal{A}_2 = \langle \mathcal{D}_2 \rangle + \langle \mathcal{D}_1^2 \rangle, \qquad \mathcal{A}_4 = \langle \mathcal{D}_4 \rangle + 4 \langle \mathcal{D}_3 \mathcal{D}_1 \rangle + 3 \langle \mathcal{D}_2^2 \rangle + 6 \langle \mathcal{D}_2 \mathcal{D}_1^2 \rangle + \langle \mathcal{D}_1^4 \rangle$$

$$\mathcal{D}_{n} = N_{f} \frac{\partial^{n} \ln \det M}{\partial \mu^{n}}$$

$$\mu \equiv \mu_{q} a_{f}$$
$$\mathcal{D}_{1} = N_{f} \operatorname{tr} \left(M^{-1} \frac{\partial M}{\partial \mu} \right)$$

$$\mathcal{D}_{2} = N_{f} \left[\operatorname{tr} \left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} \right) - \operatorname{tr} \left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} \right) \right]$$

NUMERICAL METHODS Wilson quarks are more expensive => require improvements!

Noise method efficient when off-diagonal elements are small. Because M^{-1} is a propagator, distant contributions are naturally suppressed.

For Wilson quarks, 3(color)×4(spin) competitors at the same point.
 We generate independent η for each color and spin.
 (cf.) staggered quark: spins are staggered on a cube.

Error from D_1 turned out to be dominating in the results. => We adopt about 100 times larger N_{noise} for D_1 .

RESULTS (I)

 $\lambda \chi q$

 λ_{I}

FIG. 14: Quark number susceptibility at finite μ_q for $m_{\rm PS}/m_{\rm V} = 0.65$ (left) and 0.80 (right).

FIG. 15: Isospin susceptibility at finite μ_q for $m_{\rm PS}/m_{\rm V} = 0.65$ (left) and 0.80 (right).

Suggest critical pt. at finite μ , which is insensitive to the iso-spin number.

GAUSSIAN METHOD To further improve the calculation

A hybrid Taylor+reweighting method

Allton et al., PRD 66, 074507 ('02) Ejiri, PRD 77, 014508 ('08)

Reweight the grand canonical partition function from $\mu=0$:

$$\mathcal{Z}(T,\mu_q) = \mathcal{Z}(T,0) \left\langle \left(\frac{\det M(\mu)}{\det M(0)}\right)^{N_{\rm f}} \right\rangle_{(\mu_q=0)} \equiv \mathcal{Z}(T,0) \left\langle e^{F(\mu)} e^{i\theta(\mu)} \right\rangle_{(\mu_q=0)}$$

and Taylor-expand the terms in exp:

$$F(\mu) \equiv N_{\rm f} \operatorname{Re} \left[\ln \left(\frac{\det M(\mu)}{\det M(0)} \right) \right]$$
$$= N_{\rm f} \sum_{n=1}^{\infty} \frac{1}{(2n)!} \operatorname{Re} \left[\frac{\partial^{2n} (\ln \det M)}{\partial \mu^{2n}} \right]_{(\mu=0)} \mu^{2n} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \operatorname{Re} \mathcal{D}_{2n} \mu^{2n}$$

$$\begin{aligned} \theta(\mu) &= N_{\rm f} {\rm Im} \left[\ln \det M(\mu) \right] \\ &= N_{\rm f} \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} {\rm Im} \left[\frac{\partial^{2n+1} (\ln \det M(\mu))}{\partial \mu^{2n+1}} \right]_{(\mu=0)} \mu^{2n+1} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} {\rm Im} \mathcal{D}_{2n+1} \mu^{2n+1} \end{aligned}$$

Truncate the expansions up to D_4

- * Identical to the truncated Taylor expansion up to the 4th order, but contain a part of higher orders through the exponential function.
- * Exact for free QGP, in which $D_n=0$ for n>4, => The truncation will be OK at high T.

GAUSSIAN METHOD

 $=> \theta$ -integration tractable by measuring $\frac{1}{2a_2(\bar{F})} = \langle \theta^2 \rangle_{\bar{F}}$

This mildens the sign problem (fluctuation due to $e^{i\theta}$).

(Note) θ as defined by the expansion is not restricted between $-\pi$ and $+\pi$. Conventional periodic θ is recovered by mapping the result into $(-\pi, +\pi]$.

 rT_{pc}

FIG. 25: v_0^R (left) and v_2^R (right) for color-singlet and octet $Q\bar{Q}$ channels above T_{pc} at $m_{\rm PS}/m_{\rm V} = 0.65$.

-2

-3

 rT_{pc}

FIG. 26: v_0^R (left) and v_1^R (right) for color-sextet and antitriplet QQ channels above T_{pc} at $m_{\rm PS}/m_{\rm V} = 0.65$.

00 00 $R = 1, \, 8, \, 6, \, 3^*$ $\Omega^{1}(r) = \frac{1}{2} \mathrm{tr} \Omega^{\dagger}(\mathbf{x}) \Omega(\mathbf{y}),$ $\Omega^{\mathbf{8}}(r) = \frac{1}{2} \mathrm{tr} \Omega^{\dagger}(\mathbf{x}) \mathrm{tr} \Omega(\mathbf{y}) - \frac{1}{24} \mathrm{tr} \Omega^{\dagger}(\mathbf{x}) \Omega(\mathbf{y}),$ $\Omega^{\mathbf{6}}(r) = \frac{1}{12} \operatorname{tr} \Omega(\mathbf{x}) \operatorname{tr} \Omega(\mathbf{y}) + \frac{1}{12} \operatorname{tr} \Omega(\mathbf{x}) \Omega(\mathbf{y}),$ $\Omega^{\mathbf{3}^{*}}(r) = \frac{1}{6} \operatorname{tr} \Omega(\mathbf{x}) \operatorname{tr} \Omega(\mathbf{y}) - \frac{1}{6} \operatorname{tr} \Omega(\mathbf{x}) \Omega(\mathbf{y}),$

QQ interaction: weaker at $\mu > 0$ QQ interaction: stronger at $\mu > 0$ (leading order in μ)

SUMMARY

 Study of finite density QCD with Wilson-type quarks possible by improvements.

◆ So far, results are consistent with previous studies with staggered quarks. suggest a critical point at finite µ sensitive to quark number, but insensitive to iso-spin number

◆ Some new results for heavy quark free energies, etc.

Fixed scale approach with T-integral method

Phys. Rev. D79, 051501 (2009) [arXiv:0809.2842] arXiv:0910.5284, arXiv: 0911.0254

MOTIVATION

We want to extend Wilson studies (thus "WHOT"-QCD) to $N_F=2+1$, larger N_t , and smaller m_q to avoid theoretical uncertainties of stag. quarks (universality, locality, etc.).

More improvements of the method are longed for.

A large fraction of the cost: T = 0 simulations for both stag. and Wilson

Determination of basic info about the simulation point: scale, non-perturbative beta function, etc.

T = 0 subtractions

needed at all simulation points !!

Determination of the Lines of Constant Physics (LCP)

To (partially) overcome the problem, we propose a fixed scale approach armed with a T-integral method.

FIXED SCALE APPROACH

Vary $T = \frac{1}{N_t a}$ by varying N_t with all coupling params. fixed.

Conventional integral method not applicable.

T-integral method

A thermodynamic relation at μ =0:

$$T\frac{\partial}{\partial T}\left(\frac{p}{T^{4}}\right) = \frac{\epsilon - 3p}{T^{4}}$$
$$\frac{p}{T^{4}} = \int_{T_{0}}^{T} dT \frac{\epsilon - 3p}{T^{5}}$$
$$\int_{T_{0}}^{T} dT \frac{r^{5}}{T^{5}}$$

numerical integration in T

Note: *T* can be precisely determined up to the common overall scale *a*.

FIXED SCALE APPROACH + T-INTEGRAL METHOD

lattice cutoff

1/a [GeV]

12

10

N,=4

2.5

 T/T_{c}

Pros and cons:

Note: Finite volume effects when Ns/Nt is small (physical effects).

TEST OF THE METHOD

Phys. Rev. D79, 051501 (2009) [arXiv:0809.2842]

quenched QCD (w/o dynamical quarks)

TEST(I): ISOTROPIC LATTICES

 \blacksquare i2 vs. fixed Nt=8 result \Rightarrow Consistent for T \leq 600 MeV

TEST(I): ISOTROPIC LATTICES

Sufficient points to interpolate.

Trapezoidal interpolation leads to almost identical values.

 \Rightarrow Systematic errors due to the limited resolution in T are small.

TEST(2): ANISOTROPIC LATTICE

Another test by anisotropic lattice: i2 vs. a2

 $\xi = a_s/a_t = 4$

 \Rightarrow about 4 times finer resolution in $T = 1/N_t a_t$ at similar a_s .

EOS

MEOS well consistent with each other.

M The fixed scale approach is capable to calculate EOS precisely.

SUMMARY

Fixed scale approach + T-integral method

Vary *T* by varying N_t with all coupling parameters fixed. Evaluate the pressure non-perturbatively by $\frac{p}{T^4} = \int_{T_0}^T dT \frac{\epsilon - 3p}{T^5}$

Can largely reduce the cost for *T*=0 simulations.
We can even borrow public configurations on **ILDG**Automatically on a LCP
Our approach is complementary to the fixed *Nt* approach,

and has advantages around Tc.

Tests in quenched QCD: promising

- Lattice cutoff effects small.
- Errors from the limited resolution in T controlable and small.
- Results \approx consistent with previous large scale study at fixed Nt=8.

EOS IN 2+1 FLAVOR QCD

$N_f = 2 + IQCD$ simulation

based on a T=0 study by the CP-PACS+JLQCD Collaboration

- RG-improved Iwasaki glue + NP clover-improved Wilson quarks
- $(2 \text{ fm})^3$ lattice, a=0.07, 0.1, 0.12 fm, exact PHMC algorithm for s, etc.
- configurations available on **ILDG**

PRD78,011502(08)

 $\beta = 2.05, a = 0.07 \text{fm}, m_{\pi}/m_{\rho} = 0.63, 28^3 \times 56, 6000 \text{traj}.$

T > 0 simulations

Scales set by $r_0=0.5$ fm.

0.9									N _t
0.05		WWWWWW			MARNA				4
20 20 20	000	3000	4000	5000	6000	7000	8000	9000	10000
	n hain a han han han han han han han han han								6
0.3	000	3000	4000	5000	6000	7000	8000	9000	10000
0.2 0.15 0.1									8
0.05	- Hatelbook	Andhadh dhadh dha	and and the same least	Antohalasta	mitmentehali				10
0			and Speller (opposite) Held (opposite) Speller (opposite) Speller (opposite)		n an	tinalita in anuta Provisi pity termiye	n Bara Balan ya Angelaran Mara ya Mara Ingelaran Mara ya Mara Ingelaran	nan Alkalan akain ka pangana akain	12 14 16
20	t)00	3000	4000	5000	6000	7000	8000	9000	10000
Polyakov loop history after thermalization (simulation on-going)									

 $F^{1} \rightarrow V(r) = F^{1}(T=0)$ at short distances.

 No vertical adjustment needed for F¹ in the fixed scale approach. (cf.) F¹ -->V(r) is used as an input to adjust the constant term of F¹ in the fixed Nt approach. We have thus proved the T-insensitivity of F¹ at short distances.
 Temperature effects down to shorter distances at higher T.

[arXiv:0911.0254]

Debye screening mass at $T > T_c$

$$F^{\mathbf{1}}(r,T) = -\frac{\alpha(T)}{r}e^{-m_D(T)r}$$

 $N_f=0$: Umeda et al., PRD 79, 051501 (2009) fixed scale $N_f=2$: Maezawa et al., PRD 75, 074501 (2007) fixed Nt

EOS (status report)

Beta functions not available for this lattice action yet.

=> We have to calculate by ourselves.

Inverse matrix method using the CP-PACS+JLQCD data for mps/mv(II), mps/mv(ss)

PERSPECTIVES

Beta functions

More precise data needed.

Reweighting method to directly calculate beta functions at the simulation point.

$N_F=2+IQCD$ just at the physical point

T=0 configurations by the PACS-CS Collab. under accumulation.

T>0 simulations just at the reweighted point.

Finite density

We can combine our approach with the Taylor expansion method, to explore $\mu > 0$.

