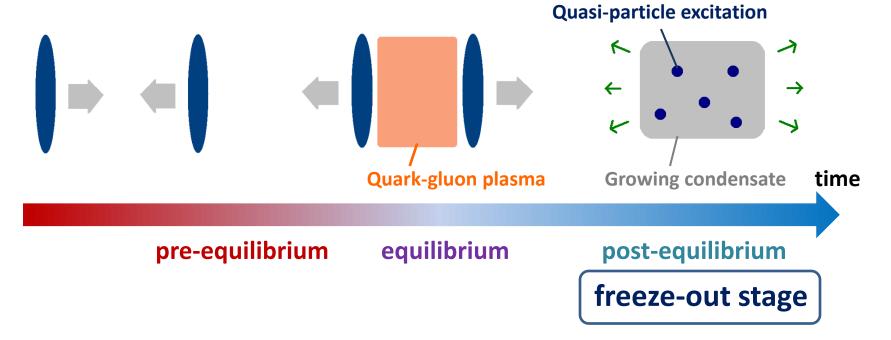
Freeze-out dynamics of expanding quantum fields

Nov 18, 2009 University of Tokyo,Komaba Yoshiaki Onishi, Tetsuo Matsui

Ultra-relativistic heavy ion collisions (RHIC, LHC, etc)



Role of chiral phase transition

O(4) linear sigma model has been used to describe chiral transition in the classical filed approximation.

Disoriented chiral condensate(DCC) is described in terms of the fluctuating classical mean field, but **no particle excitation**.

Rajagopal-Wilczek(1993), etc

Quasi-particle excitation has been introduced in terms of the Wigner functions which describe **quantum fluctuation** of meson fields. Matsui-Matsuo(2008)

We apply this theory to **freeze-out dynamics** taking into account boost-invariant expansion.

Kinetic theory of meson *condensate* and *quasi-particle excitations* (*quantum fluctuation*)

coupled

 $\prod \int \left[1_{2} + 1_{2} + 1_{2} \right]$

$$H = \int d\mathbf{r} \left[\frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{1}{2} m^2 \hat{\phi}^2 + \frac{\lambda}{4!} \hat{\phi}^4 \right]$$

$$\hat{\phi}(\mathbf{r},t) = \phi_c(\mathbf{r},t) + \tilde{\phi}(\mathbf{r},t)$$

classical mean field $\phi_{c}(\mathbf{r},t) = \langle \hat{\phi}(\mathbf{r},t)
angle$

describes meson condensates.

quantization

$$\begin{split} \tilde{\phi}(\mathbf{r},t) &= \sum_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{r}} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left[a_{\mathbf{p}}(t) + a_{-\mathbf{p}}^{\dagger}(t) \right] \\ \omega_{\mathbf{p}} &= \sqrt{p^2 + \mu^2} \quad \mu : \text{mass parameter} \end{split}$$

quantum fluctuation

describes **quasi-particle meson excitations** in terms of the Wigner functions.

Statistical average

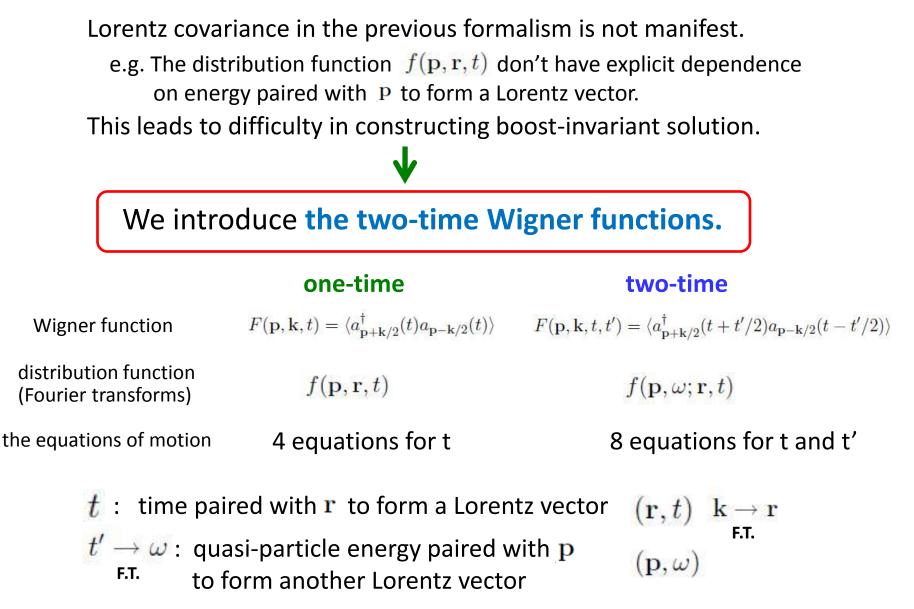
$$\langle \hat{O}(t)
angle = \operatorname{tr} \left[\hat{O}(t) \hat{\rho}
ight]$$

 $\hat{
ho}$: density matrix

The Wigner functions (the quantum distribution functions)

$$\begin{pmatrix} F & \bar{G} \\ G & \bar{F} \end{pmatrix} = \begin{pmatrix} \langle a_{\mathbf{p}+\mathbf{k}/2}^{\dagger} a_{\mathbf{p}-\mathbf{k}/2} \rangle & \langle a_{\mathbf{p}+\mathbf{k}/2}^{\dagger} a_{-\mathbf{p}+\mathbf{k}/2}^{\dagger} \rangle \\ \langle a_{-\mathbf{p}-\mathbf{k}/2} a_{\mathbf{p}-\mathbf{k}/2} \rangle & \langle a_{-\mathbf{p}-\mathbf{k}/2} a_{-\mathbf{p}+\mathbf{k}/2}^{\dagger} \rangle \end{pmatrix}$$

Problem in the previous formalism



The equations of motion for the **one-time** Wigner functions

The Landau-Vlasov equation

$$\frac{\partial}{\partial t} f(\mathbf{p}, \mathbf{r}, t) + \nabla_{\mathbf{p}} \epsilon \cdot \nabla_{\mathbf{r}} f - \nabla_{\mathbf{r}} \epsilon \cdot \nabla_{\mathbf{p}} f = i U_{\mathbf{p}} g_{-}(\mathbf{p}, \mathbf{r}, t) - \frac{1}{2} \nabla_{\mathbf{p}} U_{\mathbf{p}} \cdot \nabla_{\mathbf{r}} g_{+} + \frac{1}{2} \nabla_{\mathbf{r}} U_{\mathbf{p}} \cdot \nabla_{\mathbf{p}} g_{+}$$
drift term Vlasov term

The equation of motion for g

$$\frac{\partial}{\partial t}g(\mathbf{p},\mathbf{r},t) + 2i\epsilon g = -iU_{\mathbf{p}}f_{+}(\mathbf{p},\mathbf{r},t) - \frac{1}{2}\nabla_{\mathbf{p}}U_{\mathbf{p}}\cdot\nabla_{\mathbf{r}}f_{-} + \frac{1}{2}\nabla_{\mathbf{r}}U_{\mathbf{p}}\cdot\nabla_{\mathbf{p}}f_{-}$$

$$\begin{split} \epsilon &= \sqrt{p^2 + \mu^2} + \frac{\Delta \Pi(\mathbf{r}, t)}{2\sqrt{p^2 + \mu^2}} \equiv \omega_{\mathbf{p}} + U_{\mathbf{p}} \quad \Delta \Pi(\mathbf{r}, t) : \text{self energy} \\ f_{\pm}(\mathbf{p}, \mathbf{r}, t) &= f \pm \bar{f} \qquad g_{\pm}(\mathbf{p}, \mathbf{r}, t) = g \pm \bar{g} \quad \text{Off-diagonal component} \\ \text{of the Wigner function} \\ \begin{pmatrix} F & \bar{G} \\ G & \bar{F} \end{pmatrix} &= \begin{pmatrix} \langle a_{\mathbf{p}+\mathbf{k}/2}^{\dagger} a_{\mathbf{p}-\mathbf{k}/2} \rangle & \langle a_{\mathbf{p}+\mathbf{k}/2}^{\dagger} a_{-\mathbf{p}+\mathbf{k}/2} \rangle \\ \langle a_{-\mathbf{p}-\mathbf{k}/2} a_{\mathbf{p}-\mathbf{k}/2} \rangle & \langle a_{\mathbf{p}+\mathbf{k}/2}^{\dagger} a_{-\mathbf{p}+\mathbf{k}/2} \rangle \end{pmatrix} \underset{\mathsf{F.T.}}{\to} \begin{pmatrix} f & \bar{g} \\ g & \bar{f} \end{pmatrix} \end{split}$$

It is difficult to impose the boost-invariance in the Landau-Vlasov equation. The reason is that the Lorentz covariance in the equations is not manifest.

The equations of motion for the two-time Wigner functions

We can eliminate g by redefinition of the distribution function.

The Landau-Vlasov equation

$$\frac{\partial}{\partial t}f'(\mathbf{p},\omega;\mathbf{r},t) + \nabla_{\mathbf{p}}\epsilon'\cdot\nabla_{\mathbf{r}}f' - \nabla_{\mathbf{r}}\epsilon'\cdot\nabla_{\mathbf{p}}f' + \frac{\partial}{\partial t}\epsilon'\frac{\partial}{\partial\omega}f' = 0$$

• Energy spectrum of quasi-particle (Fourier transform of equation for t')

$$\omega = \sqrt{p^2 + \mu^2 + \Delta \Pi(\mathbf{r},t)} \equiv \epsilon'$$

$$f'(\mathbf{p},\omega;\mathbf{r},t) = \frac{1}{2} \left(\frac{\epsilon'}{\epsilon} + 1\right) f + \frac{1}{2} \left(\frac{\epsilon'}{\epsilon} - 1\right) \bar{f}$$

The Bogoliubov transformation

quasi-particle energy in the one-time formalism $\epsilon = \sqrt{p^2 + \mu^2} + \frac{\Delta \Pi(\mathbf{r}, t)}{2\sqrt{p^2 + \mu^2}}$

The Landau-Vlasov equation in a manifestly Lorentz covariant form

$$p_{\mu}\partial^{\mu}f'(\mathbf{p},\omega;\mathbf{r},t) + \frac{1}{2}\partial_{\mu}\Delta\Pi(\mathbf{r},t)\partial_{p}^{\mu}f'(\mathbf{p},\omega;\mathbf{r},t) = 0 \qquad p^{\mu} = (\omega,\mathbf{p})$$

From these equations, we can obtain the same result to the collective excitation near the equilibrium as obtained in the one-time formalism. Matsui, Matsuo(2008)

The Bogoliubov transformation

We choose a mass parameter in definition of creation/annihilation operators. Creation/annihilation operators and the Wigner functions depend on this choice.

$$\tilde{\phi} = \sum_{\mathbf{p}} \frac{e^{i\mathbf{p}\cdot\mathbf{r}}}{\sqrt{2\omega_{\mathbf{p}}}} \left(a_{\mathbf{p}} + a_{-\mathbf{p}}^{\dagger} \right) = \sum_{\mathbf{p}} \frac{e^{i\mathbf{p}\cdot\mathbf{r}}}{\sqrt{2\omega_{\mathbf{p}}'}} \left(b_{\mathbf{p}} + b_{-\mathbf{p}}^{\dagger} \right) \qquad \qquad \omega_{\mathbf{p}} = \sqrt{p^2 + \mu^2}$$
$$\omega_{\mathbf{p}}' = \sqrt{p^2 + \mu^2}$$

The Bogoliubov transformation

$$\begin{pmatrix} b_{\mathbf{p}} \\ b_{-\mathbf{p}}^{\dagger} \end{pmatrix} = \begin{pmatrix} \cosh \alpha_{\mathbf{p}} & \sinh \alpha_{\mathbf{p}} \\ \sinh \alpha_{\mathbf{p}} & \cosh \alpha_{\mathbf{p}} \end{pmatrix} \begin{pmatrix} a_{\mathbf{p}} \\ a_{-\mathbf{p}}^{\dagger} \end{pmatrix} \equiv \mathbf{M}_{\mathbf{p}} \begin{pmatrix} a_{\mathbf{p}} \\ a_{-\mathbf{p}}^{\dagger} \end{pmatrix} \qquad e^{\alpha_{\mathbf{p}}} = \sqrt{\frac{\omega_{\mathbf{p}}'}{\omega_{\mathbf{p}}}}$$

The relation between the Wigner functions

$$\begin{pmatrix} \langle b^{\dagger}b \rangle & \langle b^{\dagger}b^{\dagger} \rangle \\ \langle bb \rangle & \langle bb^{\dagger} \rangle \end{pmatrix} = \mathbf{M} \begin{pmatrix} \langle a^{\dagger}a \rangle & \langle a^{\dagger}a^{\dagger} \rangle \\ \langle aa \rangle & \langle aa^{\dagger} \rangle \end{pmatrix} \mathbf{M}$$

If we take μ'^2 as $\mu'^2 = \mu^2 + \Delta \Pi(\mathbf{r}, t)$, this relation corresponds to the redefinition of the distribution function as

$$f'(\mathbf{p},\omega;\mathbf{r},t) = \frac{1}{2} \left(\frac{\epsilon'}{\epsilon} + 1\right) f + \frac{1}{2} \left(\frac{\epsilon'}{\epsilon} - 1\right) \bar{f}$$

The boost-invariant equation in 1+1 dimension

Impose
$$f'(\mathbf{p}, \omega; \mathbf{r}, t) = f'(\tau, \xi = y - \eta, m_T, p_T)$$

$$\Delta \Pi(\mathbf{r}, T) = \Delta \Pi(\tau)$$

$$\tau = \sqrt{t^2 - z^2} \qquad m_T = \sqrt{\omega^2 - p_z^2}$$

$$\eta = \frac{1}{2} \log \frac{t+z}{t-z} \qquad y = \frac{1}{2} \log \frac{\omega + p_z}{\omega - p_z}$$

$$\xi = y - \eta$$

$$\xi = y - \eta$$

$$\zeta = y - \eta \longrightarrow \xi' = \xi$$

$$\tau, m_T, \text{ and } \xi \text{ is boost-invariant}$$

The Landau-Vlasov equation in a boost-invariant form $\frac{\partial}{\partial \tau} f' - \tanh \xi \left[\frac{1}{\tau} + \frac{1}{2m_T^2} \frac{\partial}{\partial \tau} \Delta \Pi \right] \frac{\partial f'}{\partial \xi} + \frac{1}{2m_T} \frac{\partial}{\partial \tau} \Delta \Pi \frac{\partial f'}{\partial m_T} = 0$

equation of quasi-particle excitations

coupled equations

ightarrow The equation of motion of $\ \phi_c(au)$ in a boost-invariant form

Meson condensate

Summary

We construct a kinetic theory for interacting quantum meson fields in a manifestly Lorentz covariant form in order to describe freeze-out stage of expanding meson fields.

We have introduced the *two-time* Wigner functions in order to ensure manifest Lorentz covariance.

We have shown that the two-time formalism leads to the same result to the collective excitation near the equilibrium as obtained using the one-time formalism.

We have derived the equations of motion **in a boost-invariant form**.

We are now constructing **boost-invariant solutions** numerically. Work in progress